With this closes that part of the Elements which is devoted to the study of figures in a plane.

Book XI.

§ 72. In this book figures are considered which are not confined to a plane, viz. first relations between lines and planes in space, and afterwards properties of solids.

Of new definitions we mention those which relate to the perpendicularity and the inclination of lines and planes.

Def. 3. A straight line is perpendicular, or at right angles, to a plane when it makes right angles with every straight line meeting it in that plane.

The definition of perpendicular planes (Def. 4) offers no difficulty. Euclid defines the inclination of lines to planes and of planes to planes (Defs. 5 and 6) by aid of plane angles, included by straight lines, with which we have been made familiar in the first books.

The other important definitions are those of parallel planes, which never meet (Def. 8), and of solid angles formed by three or more planes meeting in a point (Def. 9).

To these we add the definition of a line parallel to a plane as a line which does not meet the plane.

§ 73. Before we investigate the contents of Book XI., it will be well to recapitulate shortly what we know of planes and lines from the definitions and axioms of the first book. There a plane has been defined as a surface which has the property that every straight line which joins two points in it lies altogether in it. This is equivalent to saying that a straight line which has two points in a plane has all points in the plane. Hence, a straight line which does not lie in the plane cannot have more than one point in common with the plane. This is virtually the same as Euclid’s Prop. 1, viz.:—

Prop. 1. One part of a straight line cannot be in a plane and another part without it.