The substitution of the values of x, z, x′, y′, z′ in this equation will give immediately the value of cot α; and if we put ζ, ζ’ for the corresponding azimuths on a sphere, or on the supposition e = 0, the following relations exist

cot α − cot ζ = e² cos φ Q
cos φ′ Δ
cot α′ − cot ζ′ = −e² cos φ′ Q
cos φ Δ′

Δ′ sin φ − Δ sin φ′ = Q sin ω.

If from B we let fall a perpendicular on the meridian plane of A, and from A let fall a perpendicular on the meridian plane of B, then the following equations become geometrically evident:

k sin μ sin α = (a/Δ′) cos φ′ sin ω
k sin μ′ sin α′ = (a/Δ) cos φ sin ω.

Now in any surface u = 0 we have

k² = (x′ − x)² + (y′ − y)² + (z′ − z)²

−cos μ = [ (x′ − x) du+ (y′ − y) du+ (z′ − z) du] / k ( du²+ du²+ du²) 1/2
dx dydz dx²dy² dz²
cos μ′ = [ (x′ − x) du+ (y′ − y) du+ (z′ − z) du] / k ( du²+ du²+ du²) 1/2 .
dx′ dy′dz′ dx′²dy′² dz′²