In the last expression the ratio AB : BP is positive, has its greatest value ∞ when C coincides with B, and vanishes when BC becomes infinite. Hence, as C moves from B to the right to the point at infinity, the ratio AC : CB varies from −∞ to −1.
If, on the other hand, C is to the left of A, say at Q, we have AC = AQ = AB + BQ = AB − QB, hence AC/CB = AB/QB − 1.
Here AB < QB, hence the ratio AB : QB is positive and always less than one, so that the whole is negative and < 1. If C is at the point at infinity it is −1, and then increases as C moves to the right, till for C at A we get the ratio = 0. Hence—
“As C moves along the line from an infinite distance to the left to an infinite distance at the right, the ratio always increases; it starts with the value −1, reaches 0 at A, +1 at M, ∞ at B, now changes sign to −∞, and increases till at an infinite distance it reaches again the value −1. It assumes therefore all possible values from -∞ to +∞, and each value only once, so that not only does every position of C determine a definite value of the ratio AC : CB, but also, conversely, to every positive or negative value of this ratio belongs one single point in the line AB.
[Relations between segments of lines are interesting as showing an application of algebra to geometry. The genesis of such relations from algebraic identities is very simple. For example, if a, b, c, x be any four quantities, then
| a | + | b | + | c | = | x | ; |
| (a − b)(a − c)(x − a) | (b − c)(b − a)(x − b) | (c − a)(c − b)(x − c) | (x − a)(x − b)(x − c) |
this may be proved, cumbrously, by multiplying up, or, simply, by decomposing the right-hand member of the identity into partial fractions. Now take a line ABCDX, and let AB = a, AC = b, AD = c, AX = x. Then obviously (a − b) = AB − AC = −BC, paying regard to signs; (a − c) = AB − AD = DB, and so on. Substituting these values in the identity we obtain the following relation connecting the segments formed by five points on a line:—
| AB | + | AC | + | AD | = | AX | . |
| BC · BD · BX | CD · CB · CX | DB · DC · DX | BX · CX · DX |
Conversely, if a metrical relation be given, its validity may be tested by reducing to an algebraic equation, which is an identity if the relation be true. For example, if ABCDX be five collinear points, prove
| AD · AX | + | BD · BX | + | CD · CX | = 1. |
| AB · AC | BC · BA | CA · CB |