2. Two projective flat pencils are perspective—(1) if they lie in the same plane, and have a row as a common section; (2) if they lie in the same pencil (in space), and are both sections of the same axial pencil; (3) if they are in space and have a row as common section, or are both sections of the same axial pencil, one of the conditions involving the other.

3. Two projective axial pencils, if their axes meet, and if they have a flat pencil as a common section.

4. A row and a projective flat pencil, if the row is a section of the pencil, each point lying in its corresponding line.

5. A row and a projective axial pencil, if the row is a section of the pencil, each point lying in its corresponding line.

6. A flat and a projective axial pencil, if the former is a section of the other, each ray lying in its corresponding plane.

That in each case the correspondence established by the position indicated is such as has been called projective follows at once from the definition. It is not so evident that the perspective position may always be obtained. We shall show in § 30 this for the first three cases. First, however, we shall give a few theorems which relate to the general correspondence, not to the perspective position.

§ 28. Two rows or pencils, flat or axial, which are projective to a third are projective to each other; this follows at once from the definitions.

§ 29. If two rows, or two pencils, either flat or axial, or a row and a pencil, be projective, we may assume to any three elements in the one the three corresponding elements in the other, and then the correspondence is uniquely determined.

For if in two projective rows we assume that the points A, B, C in the first correspond to the given points A′, B′, C′ in the second, then to any fourth point D in the first will correspond a point D′ in the second, so that

(AB, CD) = (A′B′, C′D′).