If a triangle is inscribed in a curve of the second order, the points in which the sides are cut by the tangents at the opposite vertices meet in a point.If a triangle be circumscribed about a curve of second class, the lines which join the vertices to the points of contact of the opposite sides meet in a point (fig. 20).

§ 55. Of these theorems, those about the quadrilateral give rise to a number of others. Four points A, B, C, D may in three different ways be formed into a quadrilateral, for we may take them in the order ABCD, or ACBD, or ACDB, so that either of the points B, C, D may be taken as the vertex opposite to A. Accordingly we may apply the theorem in three different ways.

Let A, B, C, D be four points on a curve of second order (fig. 21), and let us take them as forming a quadrilateral by taking the points in the order ABCD, so that A, C and also B, D are pairs of opposite vertices. Then P, Q will be the points where opposite sides meet, and E, F the intersections of tangents at opposite vertices. The four points P, Q, E, F lie therefore in a line. The quadrilateral ACBD gives us in the same way the four points Q, R, G, H in a line, and the quadrilateral ABDC a line containing the four points R, P, I, K. These three lines form a triangle PQR.

The relation between the points and lines in this figure may be expressed more clearly if we consider ABCD as a four-point inscribed in a conic, and the tangents at these points as a four-side circumscribed about it,—viz. it will be seen that P, Q, R are the diagonal points of the four-point ABCD, whilst the sides of the triangle PQR are the diagonals of the circumscribing four-side. Hence the theorem—

Any four-point on a curve of the second order and the four-side formed by the tangents at these points stand in this relation that the diagonal points of the four-point lie in the diagonals of the four-side. And conversely,

If a four-point and a circumscribed four-side stand in the above relation, then a curve of the second order may be described which passes through the four points and touches there the four sides of these figures.

Fig. 21.

That the last part of the theorem is true follows from the fact that the four points A, B, C, D and the line a, as tangent at A, determine a curve of the second order, and the tangents to this curve at the other points B, C, D are given by the construction which leads to fig. 21.

The theorem reciprocal to the last is—

Any four-side circumscribed about a curve of second class and the four-point formed by the points of contact stand in this relation that the diagonals of the four-side pass through the diagonal points of the four-point. And conversely,