If the point P is given, and we draw a line through it, cutting the conic in A and B, then the point Q harmonic conjugate to P with regard to AB, and the point H where the tangents at A and B meet, are determined. But they lie both on p, and therefore this line is determined. If we now draw a second line through P, cutting the conic in C and D, then the point M harmonic conjugate to P with regard to CD, and the point G where the tangents at C and D meet, must also lie on p. As the first line through P already determines p, the second may be any line through P. Now every two lines through P determine a four-point ABCD on the conic, and therefore a polar-triangle which has one vertex at P and its opposite side at p. This result, together with its reciprocal, gives the theorems—

All polar-triangles which have one vertex in common have also the opposite side in common.

All polar-triangles which have one side in common have also the opposite vertex in common.

§ 63. To any point P in the plane of, but not on, a conic corresponds thus one line p as the side opposite to P in all polar-triangles which have one vertex at P, and reciprocally to every line p corresponds one point P as the vertex opposite to p in all triangles which have p as one side.

We call the line p the polar of P, and the point P the pole of the line p with regard to the conic.

If a point lies on the conic, we call the tangent at that point its polar; and reciprocally we call the point of contact the pole of tangent.

§ 64. From these definitions and former results follow—

The polar of any point P not on the conic is a line p, which has the following properties:—The pole of any line p not a tangent to the conic is a point P, which has the following properties:—
1. On every line through P which cuts the conic, the polar of P contains the harmonic conjugate of P with regard to those points on the conic.1. Of all lines through a point on p from which two tangents may be drawn to the conic, the pole P contains the line which is harmonic conjugate to p, with regard to the two tangents.
2. If tangents can be drawn from P, their points of contact lie on p.2. If p cuts the conic, the tangents at the intersections meet at P.
3. Tangents drawn at the points where any line through P cuts the conic meet on p; and conversely,3. The point of contact of tangents drawn from any point on p to the conic lie in a line with P; and conversely,
4. If from any point on p, tangents be drawn, their points of contact will lie in a line with P.4. Tangents drawn at points where any line through P cuts the conic meet on p.
5. Any four-point on the conic which has one diagonal point at P has the other two lying on p.5. Any four-side circumscribed about a conic which has one diagonal on p has the other two meeting at P.

The truth of 2 follows from 1. If T be a point where p cuts the conic, then one of the points where PT cuts the conic, and which are harmonic conjugates with regard to PT, coincides with T; hence the other does—that is, PT touches the curve at T.

That 4 is true follows thus: If we draw from a point H on the polar one tangent a to the conic, join its point of contact A to the pole P, determine the second point of intersection B of this line with the conic, and draw the tangent at B, it will pass through H, and will therefore be the second tangent which may be drawn from H to the curve.