If P is one vertex of a polar-triangle, then the other vertices, Q and R, lie on the polar p of P. One of these vertices we may choose arbitrarily. For if from any point Q on the polar a secant be drawn cutting the conic in A and D (fig. 23), and if the lines joining these points to P cut the conic again at B and C, then the line BC will pass through Q. Hence P and Q are two of the vertices on the polar-triangle which is determined by the four-point ABCD. The third vertex R lies also on the line p. It follows, therefore, also—

If Q is a point on the polar of P, then P is a point on the polar of Q; and reciprocally,

If q is a line through the pole of p, then p is a line through the pole of q.

This is a very important theorem. It may also be stated thus—

If a point moves along a line describing a row, its polar turns about the pole of the line describing a pencil.

This pencil is projective to the row, so that the cross-ratio of four poles in a row equals the cross-ratio of its four polars, which pass through the pole of the row.

To prove the last part, let us suppose that P, A and B in fig. 23 remain fixed, whilst Q moves along the polar p of P. This will make CD turn about P and move R along p, whilst QD and RD describe projective pencils about A and B. Hence Q and R describe projective rows, and hence PR, which is the polar of Q, describes a pencil projective to either.

§ 67. Two points, of which one, and therefore each, lies on the polar of the other, are said to be conjugate with regard to the conic; and two lines, of which one, and therefore each, passes through the pole of the other, are said to be conjugate with regard to the conic. Hence all points conjugate to a point P lie on the polar of P; all lines conjugate to a line p pass through the pole of p.

If the line joining two conjugate poles cuts the conic, then the poles are harmonic conjugates with regard to the points of intersection; hence one lies within the other without the conic, and all points conjugate to a point within a conic lie without it.

Of a polar-triangle any two vertices are conjugate poles, any two sides conjugate lines. If, therefore, one side cuts a conic, then one of the two vertices which lie on this side is within and the other without the conic. The vertex opposite this side lies also without, for it is the pole of a line which cuts the curve. In this case therefore one vertex lies within, the other two without. If, on the other hand, we begin with a side which does not cut the conic, then its pole lies within and the other vertices without. Hence—