Of each of these propositions, which will easily be seen to be true, the converse holds also.

§ 3. Representation of a Plane.—As we are thus enabled to represent points in a plane, we can represent any finite figure by representing its separate points. It is, however, not possible to represent a plane in this way, for the projections of its points completely cover the planes π1 and π2, and no plane would appear different from any other. But any plane α cuts each of the planes π1, π2 in a line. These are called the traces of the plane. They cut each other in the axis at the point where the latter cuts the plane α.

A plane is determined by its two traces, which are two lines that meet on the axis, and, conversely, any two lines which meet on the axis determine a plane.

If the plane is parallel to the axis its traces are parallel to the axis. Of these one may be at infinity; then the plane will cut one of the planes of projection at infinity and will be parallel to it. Thus a plane parallel to the horizontal plane of the plan has only one finite trace, viz. that with the plane of elevation.

Fig. 40.

If the plane passes through the axis both its traces coincide with the axis. This is the only case in which the representation of the plane by its two traces fails. A third plane of projection is therefore introduced, which is best taken perpendicular to the other two. We call it simply the third plane and denote it by π3. As it is perpendicular to π1, it may be taken as the plane of elevation, its line of intersection γ with π1 being the axis, and be turned down to coincide with π1. This is represented in fig. 40. OC is the axis xy whilst OA and OB are the traces of the third plane. They lie in one line γ. The plane is rabatted about γ to the horizontal plane. A plane α through the axis xy will then show in it a trace α3. In fig. 40 the lines OC and OP will thus be the traces of a plane through the axis xy, which makes an angle POQ with the horizontal plane.

We can also find the trace which any other plane makes with π3. In rabatting the plane π3 its trace OB with the plane π2 will come to the position OD. Hence a plane β having the traces CA and CB will have with the third plane the trace β3, or AD if OD = OB.

It also follows immediately that—

If a plane α is perpendicular to the horizontal plane, then every point in it has its horizontal projection in the horizontal trace of the plane, as all the rays projecting these points lie in the plane itself.