Suppose S = 0, S′ = 0 are lines (that is, let S, S′ now denote linear functions Ax + By + C, A′x + B′y + C′), then S − kS′ = 0 (k an arbitrary constant) is the equation of any line passing through the point of intersection of the two given lines. Such a line may be made to pass through any given point, say the point (x0, y0); if S0, S′0 are what S, S′ respectively become on writing for (x, y) the values (x0, y0), then the value of k is k = S0 ÷ S′0. The equation in fact is SS′0 − S0S′ = 0; and starting from this equation we at once verify it a posteriori; the equation is a linear equation satisfied by the values of (x, y) which make S = 0, S′ = 0; and satisfied also by the values (x0, y0); and it is thus the equation of the line in question.

If, as before, S = 0, S′ = 0 represent circles, then (k being arbitrary) S − kS′ = 0 is the equation of any circle passing through the two points of intersection of the two circles; and to make this pass through a given point (x0, y0) we have again k = S0 ÷ S′0. In the particular case k = 1, the circle becomes the common chord (more accurately it becomes the common chord together with the line infinity; see § 23 below).

If S denote the general quadric function,

S = ax2 + 2hxy + by2 + 2fy + 2gx + c,

then the equation S = 0 represents a conic; assuming this, then, if S′ = 0 represents another conic, the equation S − kS′ = 0 represents any conic through the four points of intersection of the two conics.

Fig. 52.

14. The object still being to illustrate the mode of working with coordinates for descriptive purposes, we consider the theorem of the polar of a point in regard to a circle. Given a circle and a point O (fig. 52), we draw through O any two lines meeting the circle in the points A, A′ and B, B′ respectively, and then taking Q as the intersection of the lines AB′ and A′B, the theorem is that the locus of the point Q is a right line depending only upon O and the circle, but independent of the particular lines OAA′ and OBB′.

Taking O as the origin, and for the axes any two lines through O at right angles to each other, the equation of the circle will be

x2 + y2 + 2Ax + 2By + C = 0;

and if the equation of the line OAA′ is taken to be y = mx, then the points A, A′ are found as the intersections of the straight line with the circle; or to determine x we have