This division of the science deals with fossils, or the traces of plants and animals preserved in the rocks of the earth’s crust, and endeavours to gather from them information as to the history of the globe and its inhabitants. The term “fossil” (Lat. fossilis, from fodere, to dig up), meaning literally anything “dug up,” was formerly applied indiscriminately to any mineral substance taken out of the earth’s crust, whether organized or not. Since the time of Lamarck, however, the meaning of the word has been restricted, so as to include only the remains or traces of plants and animals preserved in any natural formation whether hard rock or superficial deposit. It includes not merely the petrified structures of organisms, but whatever was directly connected with or produced by these organisms. Thus the resin which was exuded from trees of long-perished forests is as much a fossil as any portion of the stem, leaves, flowers or fruit, and in some respects is even more valuable to the geologist than more determinable remains of its parent trees, because it has often preserved in admirable perfection the insects which flitted about in the woodlands. The burrows and trails of a worm preserved in sandstone and shale claim recognition as fossils, and indeed are commonly the only indications to be met with of the existence of annelid life among old geological formations. The droppings of fishes and reptiles, called coprolites, are excellent fossils, and tell their tale as to the presence and food of vertebrate life in ancient waters. The little agglutinated cases of the caddis-worm remain as fossils in formations from which, perchance, most other traces of life may have passed away. Nay, the very handiwork of man, when preserved in any natural manner, is entitled to rank among fossils; as where his flint-implements have been dropped into the pre-historic gravels of river-valleys or where his canoes have been buried in the silt of lake-bottoms.

A study of the land-surfaces and sea-floors of the present time shows that there are so many chances against the conservation of the remains of either terrestrial or marine animals and plants that if, as is probable, the same conditions existed in former geological periods, we should regard the occurrence of organic remains among the stratified formations of the earth’s crust as generally the result of various fortunate accidents.

Let us consider, in the first place, the chances for the preservation of remains of the present fauna and flora of a country. The surface of the land may be densely clothed with forest and abundantly peopled with animal life. But the trees die and moulder into soil. The animals, too, disappear, generation after generation, and leave few or no perceptible traces of their existence. If we were not aware from authentic records that central and northern Europe were covered with vast forests at the beginning of our era, how could we know this fact? What has become of the herds of wild oxen, the bears, wolves and other denizens of primeval Europe? How could we prove from the examination of the surface soil of any country that those creatures had once abounded there? The conditions for the preservation of any relics of the plant and animal life of a terrestrial surface must obviously be always exceptional. They are supplied only where the organic remains can be protected from the air and superficial decay. Hence they may be observed in (1) the deposits on the floors of lakes; (2) in peat-mosses; (3) in deltas at river-mouths; and (4) under the stalagmite of caverns in limestone districts. But in these and other favourable places a mere infinitesimal fraction of the fauna or flora of a land-surface is likely to be entombed or preserved.

In the second place, although in the sea the conditions for the preservation of organic remains are in many respects more favourable than on land, they are apt to be frustrated by many adverse circumstances. While the level of the land remains stationary, there can be but little effective entombment of marine organisms in littoral deposits; for only a limited accumulation of sediment will be formed until subsidence of the sea-floor takes place. In the trifling beds of sand or gravel thrown up on a stationary shore, only the harder and more durable forms of life, such as gastropods and lamellibranchs, which can withstand the triturating effects of the beach waves, are likely to remain uneffaced.

Below tide-marks, along the margin of the land where sediment is gradually deposited, the conditions are more favourable for the preservation of marine organisms. In the sheets of sand and mud there laid down the harder parts of many forms of life may be entombed and protected from decay. But only a small proportion of the total marine fauna may be expected to appear in such deposits. At the best, merely littoral and shallow-water forms will occur, and, even under the most favourable conditions, they will represent but a fraction of the whole assemblage of life in these juxta-terrestrial parts of the ocean. As we recede from the land the rate of deposition of sediment on the sea-floor must become feebler, until, in the remote central abysses, it reaches a hardly appreciable minimum. Except, therefore, where some kind of ooze or other deposit is accumulating in these more pelagic regions, the conditions must be on the whole unfavourable for the preservation of any adequate representation of the deep-sea fauna. Hard durable objects, such as teeth and bones, may slowly accumulate, and be protected by a coating of peroxide of manganese, or of some of the silicates now forming here and there over the deep-sea bottom; or the rate of growth of the abysmal deposit may be so tardy that most of the remains of at least the larger animals will disappear, owing to decay, before they can be covered up and preserved. Any such deep-sea formation, if raised into land, would supply but a meagre picture of the whole life of the sea.

It would thus appear that the portion of the sea-floor best suited for receiving and preserving the most varied assemblage of marine organic remains is the area in front of the land, to which rivers and currents bring continual supplies of sediment. The most favourable conditions for the accumulation of a thick mass of marine fossiliferous strata will arise when the area of deposit is undergoing a gradual subsidence. If the rate of depression and that of deposit were equal, or nearly so, the movement might proceed for a vast period without producing any great apparent change in marine geography, and even without seriously affecting the distribution of life over the sea-floor within the area of subsidence. Hundreds or thousands of feet of sedimentary strata might in this way be heaped up round the continents, containing a fragmentary series of organic remains belonging to those forms of comparatively shallow-water life which had hard parts capable of preservation. There can be little doubt that such has, in fact, been the history of the main mass of stratified formations in the earth’s crust. By far the largest proportion of these piles of marine strata has unquestionably been laid down in water of no great depth within the area of deposit of terrestrial sediment. The enormous thickness to which they attain seems only explicable by prolonged and repeated movements of subsidence, interrupted, however, as we know, by other movements of a contrary kind.

Since the conditions for the preservation of organic remains exist more favourably under the sea than on land, marine organisms must be far more abundantly conserved than those of the land. This is true to-day, and has, as far as known, been true in all past geological time. Hence for the purposes of the geologist the fossil remains of marine forms of life far surpass all others in value. Among them there will necessarily be a gradation of importance, regulated chiefly by their relative abundance. Now, of all the marine tribes which live within the juxta-terrestrial belt of sedimentation, unquestionably the Mollusca stand in the place of pre-eminence as regards their aptitude for becoming fossils. They almost all possess a hard, durable shell, capable of resisting considerable abrasion and readily passing into a mineralized condition. They are extremely abundant both as to individuals and genera. They occur on the shore within tide mark, and range thence down into the abysses. Moreover, they appear to have possessed these qualifications from early geological times. In the marine Mollusca, therefore, we have a common ground of comparison between the stratified formations of different periods. They have been styled the alphabet of palaeontological inquiry.

There are two main purposes to which fossils may be put in geological research: (1) to throw light upon former conditions of physical geography, such as the presence of land, rivers, lakes and seas, in places where they do not now exist, changes of climate, and the former distribution of plants and animals; and (2) to furnish a guide in geological chronology whereby rocks may be classified according to relative date, and the facts of geological history may be arranged and interpreted as a connected record of the earth’s progress.

1. As examples of the first of these two directions of inquiry reference may be made to (a) former land-surfaces revealed by the occurrence of layers of soil with tree-stumps and roots still in the position of growth (see [Purbeckian]); (b) ancient lakes proved by beds of marl or limestone full of lacustrine shells; (c) old sea-bottoms marked by the occurrence of marine organisms; (d) variations in the quality of the water, such as freshness or saltness, indicated by changes in the size and shape of the fossils; (e) proximity to former land, suggested by the occurrence of abundant drift-wood in the strata; (f) former conditions of climate, different from the present, as evidenced by such organisms as tropical types of plants and animals intercalated among the strata of temperate or northern countries.

2. In applying fossils to the determination of geological chronology it is first necessary to ascertain the order of superposition of the rocks. Obviously, in a continuous series of undisturbed sedimentary deposits the lowest must necessarily be the oldest, and the plants or animals which they contain must have lived and died before any of the organisms that occur in the overlying strata. This order of superposition having been settled in a series of formations, it is found that the fossils at the bottom are not quite the same as those at the top of the series. Tracing the beds upward, we discover that species after species of the lowest platforms disappears, until perhaps not one of them is found. With the cessation of these older species others make their entrance. These, in turn, are found to die out, and to be replaced by newer forms. After patient examination of the rocks, it has been ascertained that every well-marked “formation,” or group of strata, is characterized by its own species or genera, or by a general assemblage, or facies, of organic forms. Such a generalization can only, of course, be determined by actual practical experience over an area of some size. When the typical fossils of a formation are known, they serve to identify that formation in its progress across a country. Thus, in tracts where the true order of superposition cannot be determined, owing to the want of sections or to the disturbed condition of the rocks, fossils serve as a means of identification and furnish a guide to the succession of the rocks. They even demonstrate that in some mountainous ground the beds have been turned completely upside down, where it can be shown that the fossils in what are now the uppermost strata ought properly to lie underneath those in the beds below them.