Part VII.—Stratigraphical Geology

This branch of the science arranges the rocks of the earth’s crust in the order of their appearance, and interprets the sequence of events of which they form the records. Its province is to cull from the other departments of geology the facts which may be needed to show what has been the progress of our planet, and of each continent and country, from the earliest times of which the rocks have preserved any memorial. Thus from mineralogy and petrography it contains information regarding the origin and subsequent mutations of minerals and rocks. From dynamical geology it learns by what agencies the materials of the earth’s crust have been formed, altered, broken, upheaved and melted. From geotectonic geology it understands the various processes whereby these materials were put together so as to build up the complicated crust of the earth. From palaeontological geology it receives in well-determined fossil remains a clue by which to discriminate the different stratified formations, and to trace the grand onward march of organized existence upon this planet. Stratigraphical geology thus gathers up the sum of all that is made known by the other departments of the science, and makes it subservient to the interpretation of the geological history of the earth.

The leading principles of stratigraphy may be summed up as follows:

1. In every stratigraphical research the fundamental requisite is to establish the order of superposition of the strata. Until this is accomplished it is impossible to arrange the dates, and make out the sequence of geological history.

2. The stratified portion of the earth’s crust, or what has been called the “geological record,” can be subdivided into natural groups, or series of strata, characterized by distinctive organic remains and recognizable by these remains, in spite of great changes in lithological character from place to place. A bed, or a number of beds, linked together by containing one or more distinctive species or genera of fossils is termed a zone or horizon, and usually bears the name of one of its more characteristic fossils, as the Planorbis-zone of the Lower Lias, which is so called from the prevalence in it of the ammonite Psiloceras planorbis. Two or more such zones related to each other by the possession of a number of the same characteristic species or genera have been designated beds or an assise. Two or more sets of beds or assises similarly related form a group or stage; a number of groups or stages make a series, formation or section, and a succession of formations may be united into a system.

3. Some living species of plants and animals can be traced downwards through the more recent geological formations; but the number which can be so followed grows smaller as the examination is pursued into more ancient deposits. With their disappearance other species or genera present themselves which are no longer living. These in turn may be traced backward into earlier formations, till they too cease and their places are taken by yet older forms. It is thus shown that the stratified rocks contain the records of a gradual progression of organic forms. A species which has once died out does not seem ever to have reappeared.

4. When the order of succession of organic remains among the stratified rocks has been determined, they become an invaluable guide in the investigation of the relative age of rocks and the structure of the land. Each zone and formation, being characterized by its own species or genera, may be recognized by their means, and the true succession of strata may thus be confidently established even in a country wherein the rocks have been shattered by dislocation, folded, inverted or metamorphosed.

5. Though local differences exist in regard to the precise zone in which a given species of organism may make its first appearance, the general order of succession of the organic forms found in the rocks is never inverted. The record is nowhere complete in any region, but the portions represented, even though extremely imperfect, always follow each other in their proper chronological order, unless where disturbance of the crust has intervened to destroy the original sequence.

6. The relative chronological value of the divisions of the geological record is not to be measured by mere depth of strata. While it may be reasonably assumed that, in general, a great thickness of stratified rock must mark the passage of a long period of time, it cannot safely be affirmed that a much less thickness elsewhere must represent a correspondingly diminished period. The need for this caution may sometimes be made evident by an unconformability between two sets of rocks, as has already been explained. The total depth of both groups together may be, say 1000 ft. Elsewhere we may find a single unbroken formation reaching a depth of 10,000 ft.; but it would be unwarrantable to assume that the latter represents ten times the length of time indicated by the former two. So far from this being the case, it might not be difficult to show that the minor thickness of rock really denotes by far the longer geological interval. If, for instance, it could be proved that the upper part of both the sections lies on one and the same geological platform, but that the lower unconformable series in the one locality belongs to a far lower and older system of rocks than the base of the thick conformable series in the other, then it would be clear that the gap marked by the unconformability really indicates a longer period than the massive succession of deposits.

7. Fossil evidence furnishes the chief means of comparing the relative value of formations and groups of rock. A “break in the succession of organic remains,” as already explained, marks an interval of time often unrepresented by strata at the place where the break is found. The relative importance of these breaks, and therefore, probably, the comparative intervals of time which they mark, may be estimated by the difference of the facies or general character of the fossils on each side. If, for example, in one case we find every species to be dissimilar above and below a certain horizon, while in another locality only half of the species on each side are peculiar, we naturally infer, if the total number of species seems large enough to warrant the inference, that the interval marked by the former break was much longer than that marked by the second. But we may go further and compare by means of fossil evidence the relation between breaks in the succession of organic remains and the depth of strata between them.