A distinct type of mountain due to direct hypogene action is to be seen in a volcano. It has been already pointed out (Part IV. sect. 1) that at the vents which maintain a communication between the molten magma of the earth’s interior and the surface, eruptions take place whereby quantities of lava and fragmentary materials are heaped round each orifice of discharge. A typical volcanic mountain takes the form of a perfect cone, but as it grows in size and its main vent is choked, while the sides of the cone are unable to withstand the force of the explosions or the pressure of the ascending column of lava, eruptions take place laterally, and numerous parasitic cones arise on the flanks of the parent mountain. Where lava flows out from long fissures, it may pile up vast sheets of rock, and bury the surrounding country under several thousand feet of solid stone, covering many hundreds of square miles. In this way volcanic tablelands have been formed which, attacked by the denuding forces, are gradually trenched by valleys and ravines, until the original level surface of the lava-field may be almost or wholly lost. As striking examples of this physiographical type reference may be made to the plateau of Abyssinia, the Ghats of India, the plateaux of Antrim, the Inner Hebrides and Iceland, and the great lava-plains of the western territories of the United States.
2. But while the subterranean movements have upraised portions of the surface of the lithosphere above the level of the ocean, and have thus been instrumental in producing the existing tracts of land, the detailed topographical features of a landscape are not solely, nor in general even chiefly, attributable to these movements. From the time that any portion of the sea-floor appears above sea-level, it undergoes erosion by the various epigene agents. Each climate and geological region has its own development of these agents, which include air, aridity, rapid and frequent alternations of wetness and dryness or of heat and cold, rain, springs, frosts, rivers, glaciers, the sea, plant and animal life. In a dry climate subject to great extremes of temperature the character and rate of decay will differ from those of a moist or an arctic climate. But it must be remembered that, however much they may vary in activity and in the results which they effect, the epigene forces work without intermission, while the hypogene forces bring about the upheaval of land only after long intervals. Hence, trifling as the results during a human life may appear, if we realize the multiplying influence of time we are led to perceive that the apparently feeble superficial agents can, in the course of ages, achieve stupendous transformations in the aspect of the land. If this efficacy may be deduced from what can be seen to be in progress now, it may not less convincingly be shown, from the nature of the sedimentary rocks of the earth’s crust, to have been in progress from the early beginnings of geological history. Side by side with the various upheavals and subsidences, there has been a continuous removal of materials from the land, and an equally persistent deposit of these materials under water, with the consequent growth of new rocks. Denudation has been aptly compared to a process of sculpturing wherein, while each of the implements employed by nature, like a special kind of graving tool, produces its own characteristic impress on the land, they all combine harmoniously towards the achievement of their one common task. Hence the present contours of the land depend partly on the original configuration of the ground, and the influence it may have had in guiding the operations of the erosive agents, partly on the vigour with which these agents perform their work, and partly on the varying structure and powers of resistance possessed by the rocks on which the erosion is carried on.
Where a new tract of land has been raised out of the sea by such an energetic movement as broke up the crust and produced the complicated structure and tumultuous external forms of a great mountain chain, the influence of the hypogene forces on the topography attains its highest development. But even the youngest existing chain has suffered so greatly from denudation that the aspect which it presented at the time of its uplift can only be dimly perceived. No more striking illustration of this feature can be found than that supplied by the Alps, nor one where the geotectonic structures have been so fully studied in detail. On the outer flanks of these mountains the longitudinal ridges and valleys of the Jura correspond with lines of anticline and syncline. Yet though the dominant topographical elements of the region have obviously been produced by the plication of the stratified formations, each ridge has suffered so large an amount of erosion that the younger rocks have been removed from its crest where the older members of the series are now exposed to view, while on every slope proofs may be seen of extensive denudation. If from these long wave-like undulations of the ground, where the relations between the disposition of the rocks below and the forms of the surface are so clearly traceable, the observer proceeds inwards to the main chain, he finds that the plications and displacements of the various formations assume an increasingly complicated character; and that although proofs of great denudation continue to abound, it becomes increasingly difficult to form any satisfactory conjecture as to the shape of the ground when the upheaval ended or any reliable estimate of the amount of material which has since then been removed. Along the central heights the mountains lift themselves towards the sky like the storm-swept crests of vast earth-billows. The whole aspect of the ground suggests intense commotion, and the impression thus given is often much intensified by the twisted and crumpled strata, visible from a long distance, on the crags and crests. On this broken-up surface the various agents of denudation have been ceaselessly engaged since it emerged from the sea. They have excavated valleys, sometimes along depressions provided for them by the subterranean disturbances, sometimes down the slopes of the disrupted blocks of ground. So powerful has been this erosion that valleys cut out along lines of anticline, which were natural ridges, have sometimes become more important than those in lines of syncline, which were structurally depressions. The same subaerial forces have eroded lake-basins, dug out corries or cirques, notched the ridges, splintered the crests and furrowed the slopes, leaving no part of the original surface of the uplifted chain unmodified.
It has often been noted with surprise that features of underground structure which, it might have been confidently anticipated, should have exercised a marked influence on the topography of the surface have not been able to resist the levelling action of the denuding agents, and do not now affect the surface at all. This result is conspicuously seen in coal-fields where the strata are abundantly traversed by faults. These dislocations, having sometimes a displacement of several hundred feet, might have been expected to break up the surface into a network of cliffs and plains; yet in general they do not modify the level character of the ground above. One of the most remarkable faults in Europe is the great thrust which bounds the southern edge of the Belgian coal-field and brings the Devonian rocks above the Coal-measures. It can be traced across Belgium into the Boulonnais, and may not improbably run beneath the Secondary and Tertiary rocks of the south of England. It is crossed by the valleys of the Meuse and other northerly-flowing streams. Yet so indistinctly is it marked in the Meuse valley that no one would suspect its existence from any peculiarity in the general form of the ground, and even an experienced geologist, until he had learned the structure of the district, would scarcely detect any fault at all.
Where faults have influenced the superficial topography, it is usually by giving rise to a hollow along which the subaerial agents and especially running water can act effectively. Such a hollow may be eventually widened and deepened into a valley. On bare crags and crests, lines of fault are apt to be marked by notches or clefts, and they thus help to produce the pinnacles and serrated outlines of these exposed uplands.
It was cogently enforced by Hutton and Playfair, and independently by Lamarck, that no co-operation of underground agency is needed to produce such topography as may be seen in a great part of the world, but that if a tract of sea-floor were upraised into a wide plain, the fall of rain and the circulation of water over its surface would in the end carve out such a system of hills and valleys as may be seen on the dry land now. No such plain would be a dead-level. It would have inequalities on its surface which would serve as channels to guide the drainage from the first showers of rain. And these channels would be slowly widened and deepened until they would become ravines and valleys, while the ground between them would be left projecting as ridges and hills. Nor would the erosion of such a system of water-courses require a long series of geological periods for its accomplishment. From measurements and estimates of the amount of erosion now taking place in the basin of the Mississippi river it has been computed that valleys 800 ft. deep might be carved out in less than a million years. In the vast tablelands of Colorado and other western regions of the United States an impressive picture is presented of the results of mere subaerial erosion on undisturbed and nearly level strata. Systems of stream-courses and valleys, river gorges unexampled elsewhere in the world for depth and length, vast winding lines of escarpment, like ranges of sea-cliffs, terraced slopes rising from plateau to plateau, huge buttresses and solitary stacks standing like islands out of the plains, great mountain-masses towering into picturesque peaks and pinnacles cleft by innumerable gullies, yet everywhere marked by the parallel bars of the horizontal strata out of which they have been carved—these are the orderly symmetrical characteristics of a country where the scenery is due entirely to the action of subaerial agents on the one hand and the varying resistance of perfectly regular stratified rocks on the other.
The details of the sculpture of the land have mainly depended on the nature of the materials on which nature’s erosive tools have been employed. The joints by which all rocks are traversed have been especially serviceable as dominant lines down which the rain has filtered, up which the springs have risen and into which the frost wedges have been driven. On the high bare scarps of a lofty mountain the inner structure of the mass is laid open, and there the system of joints even more than faults is seen to have determined the lines of crest, the vertical walls of cliff and precipice, the forms of buttress and recess, the position of cleft and chasm, the outline of spire and pinnacle. On the lower slopes, even under the tapestry of verdure which nature delights to hang where she can over her naked rocks, we may detect the same pervading influence of the joints upon the forms assumed by ravines and crags. Each kind of stone, too, gives rise to its own characteristic form of scenery. Massive crystalline rocks, such as granite, break up along their joints and often decay into sand or earth along their exposed surfaces, giving rise to rugged crags with long talus slopes at their base. The stratified rocks besides splitting at their joints are especially distinguished by parallel ledges, cornices and recesses, produced by the irregular decay of their component strata, so that they often assume curiously architectural types of scenery. But besides this family feature they display many minor varieties of aspect according to their lithological composition. A range of sandstone hills, for example, presents a marked contrast to one of limestone, and a line of chalk downs to the escarpments formed by alternating bands of harder and softer clays and shales.
It may suffice here merely to allude to a few of the more important parts of the topography of the land in their relation to physiographical geology. A true mountain-chain, viewed from the geological side, is a mass of high ground which owes its prominence to a ridging-up of the earth’s crust, and the intense plication and rupture of the rocks of which it is composed. But ranges of hills almost mountainous in their bulk may be formed by the gradual erosion of valleys out of a mass of original high ground, such as a high plateau or tableland. Eminences which have been isolated by denudation from the main mass of the formations of which they originally formed part are known as “outliers” or “hills of circumdenudation.”
Tablelands, as already pointed out, may be produced either by the upheaval of tracts of horizontal strata from the sea-floor into land; or by the uprise of plains of denudation, where rocks of various composition, structure and age have been levelled down to near or below the level of the sea by the co-operation of the various erosive agents. Most of the great tablelands of the globe are platforms of little-disturbed strata which have been upraised bodily to a considerable elevation. No sooner, however, are they placed in that position than they are attacked by running water, and begin to be hollowed out into systems of valleys. As the valleys sink, the platforms between them grow into narrower and more definite ridges, until eventually the level tableland is converted into a complicated network of hills and valleys, wherein, nevertheless, the key to the whole arrangement is furnished by a knowledge of the disposition and effects of the flow of water. The examples of this process brought to light in Colorado, Wyoming, Nevada and the other western regions by Newberry, King, Hayden, Powell and other explorers, are among the most striking monuments of geological operations in the world.
Examples of ancient and much decayed tablelands formed by the denudation of much disturbed rocks are furnished by the Highlands of Scotland and of Norway. Each of these tracts of high ground consists of some of the oldest and most dislocated formations of Europe, which at a remote period were worn down into a plain, and in that condition may have lain long submerged under the sea and may possibly have been overspread there with younger formations. Having at a much later time been raised several thousand feet above sea-level the ancient platforms of Britain and Scandinavia have been since exposed to denudation, whereby each of them has been so deeply channeled into glens and fjords that it presents to-day a surface of rugged hills, either isolated or connected along the flanks, while only fragments of the general surface of the tableland can here and there be recognized amidst the general destruction.