The answer to the second of the above questions follows from this, and gives the theorem Prop. 29:—If a straight line fall on two parallel straight lines, it makes the alternate angles equal to one another, and the exterior angle equal to the interior and opposite angle on the same side, and also the two interior angles on the same side together equal to two right angles.
§ 14. With this a new part of elementary geometry begins. The earlier propositions are independent of this axiom, and would be true even if a wrong assumption had been made in it. They all relate to figures in a plane. But a plane is only one among an infinite number of conceivable surfaces. We may draw figures on any one of them and study their properties. We may, for instance, take a sphere instead of the plane, and obtain “spherical” in the place of “plane” geometry. If on one of these surfaces lines and figures could be drawn, answering to all the definitions of our plane figures, and if the axioms with the exception of the last all hold, then all propositions up to the 28th will be true for these figures. This is the case in spherical geometry if we substitute “shortest line” or “great circle” for “straight line,” “small circle” for “circle,” and if, besides, we limit all figures to a part of the sphere which is less than a hemisphere, so that two points on it cannot be opposite ends of a diameter, and therefore determine always one and only one great circle.
For spherical triangles, therefore, all the important propositions 4, 8, 26; 5 and 6; and 18, 19 and 20 will hold good.
This remark will be sufficient to show the impossibility of proving Euclid’s last axiom, which would mean proving that this axiom is a consequence of the others, and hence that the theory of parallels would hold on a spherical surface, where the other axioms do hold, whilst parallels do not even exist.
It follows that the axiom in question states an inherent difference between the plane and other surfaces, and that the plane is only fully characterized when this axiom is added to the other assumptions.
§ 15. The introduction of the new axiom and of parallel lines leads to a new class of propositions.
After proving (Prop. 30) that “two lines which are each parallel to a third are parallel to each other,” we obtain the new properties of triangles contained in Prop. 32. Of these the second part is the most important, viz. the theorem, The three interior angles of every triangle are together equal to two right angles.
As easy deductions not given by Euclid but added by Simson follow the propositions about the angles in polygons, they are given in English editions as corollaries to Prop. 32.
These theorems do not hold for spherical figures. The sum of the interior angles of a spherical triangle is always greater than two right angles, and increases with the area.
§ 16. The theory of parallels as such may be said to be finished with Props. 33 and 34, which state properties of the parallelogram, i.e. of a quadrilateral formed by two pairs of parallels. They are—