+ Aμ2 cos γ sin θ cos θ cos φ − (Kμ + gMh) sin θ cos φ = 0.

(11)

The position of relative equilibrium is given by

cos φ = 0, and sin φ = Kμ + gMh − Aμ2 cos γ cos θ.
Aμ2 sin γ sin θ

(12)

For small values of μ the equation becomes

A d2φsin γ − (Kμ + gMh) sin θ cos φ = 0,
dt2

(13)

so that φ = ½π gives the position of stable equilibrium, and the period of a small oscillation is 2π √{A sin γ/(Kμ + gMh) sin θ}.

In the general case, denoting the periods of vibration about φ = ½π, −½π, and the sidelong position of equilibrium by 2π/(n1, n2, or n3), we shall find