2 sin2 ½c = Mn2 2Ta (a + l) + KNl − An2l.
T 2Ta + Kn − An2 + Mn2a2

(19)

With K = 0, A = 0, this reduces to Lagrange’s condition in the vibration of a string of beads.

Putting

ρ = M/2 (a + l),   the mass per unit length of the chain,

(20)

κ = K/2 (a + l),   the gyrostatic angular momentum per unit length,

(21)

α = A/2 (a + l),   the transverse moment of inertia per unit length,

(22)