| 2 sin2 ½c = | Mn2 2Ta (a + l) + KNl − An2l | . |
| T 2Ta + Kn − An2 + Mn2a2 |
(19)
With K = 0, A = 0, this reduces to Lagrange’s condition in the vibration of a string of beads.
Putting
ρ = M/2 (a + l), the mass per unit length of the chain,
(20)
κ = K/2 (a + l), the gyrostatic angular momentum per unit length,
(21)
α = A/2 (a + l), the transverse moment of inertia per unit length,
(22)