| From Arch. zool, expérimentale, by permission of Schleicher Frères. |
| Fig. 11.—Urino-Genital Organs of the right side in a male Scyllium. (After Borcea.) |
| m.n. 1, Anterior (genital) portion of mesonephros with its coiled duct. m.n. 2, Posterior (renal) portion of mesonephros. s.s, Sperm sac. T, Testis. u, “Ureter” formed by fusion of collecting tubes of renal portion of mesonephros. u.g.s, Urino-genital sinus; v.s, Vesicula seminalis. |
Relations of Renal and Reproductive Organs. (1) Female.—In the Selachians and Dipnoans the oviduct is of the type (Müllerian duct) present in the higher vertebrates and apparently representing a split-off portion of the archinephric duct. At its anterior end is a wide funnel-like coelomic opening. Its walls are glandular and secrete accessory coverings for the eggs. In the great majority of Teleosts and in Lepidosteus the oviduct possesses no coelomic funnel, its walls being in structural continuity with the wall of the ovary. In most of the more primitive Teleostomes (Crossopterygians, sturgeons, Amia) the oviduct has at its front end an open coelomic funnel, and it is difficult to find adequate reason for refusing to regard such oviducts as true Müllerian ducts. On this interpretation the condition characteristic of Teleosts would be due to the lips of the oviduct becoming fused with the ovarian wall, and the duct itself would be a Müllerian duct as elsewhere.
A departure from the normal arrangement is found in those Teleosts which shed their eggs into the splanchnocoele, e.g. amongst Salmonidae, the smelt (Osmerus) and capelin (Mallotus) possess a pair of oviducts resembling Müllerian ducts while the salmon possesses merely a pair of genital pores opening together behind the anus. It seems most probable that the latter condition has been derived from the former by reduction of the Müllerian ducts, though it has been argued that the converse process has taken place. The genital pores mentioned must not be confused with the abdominal pores, which in many adult fishes, particularly in those without open peritoneal funnels, lead from coelom directly to the exterior in the region of the cloacal opening. These appear to be recent developments, and to have nothing to do morphologically with the genitourinary system.[23]
(2) Male.—It seems that primitively the male reproductive elements like the female were shed into the coelom and passed thence through the nephridial tubules. In correlation probably with the greatly reduced size of these elements they are commonly no longer shed into the splanchnocoele, but are conveyed from the testis through covered-in canals to the Malpighian bodies or kidney tubules. The system of covered-in canals forms the testicular network, the individual canals being termed vasa efferentia. In all probability the series of vasa efferentia was originally spread over the whole length of the elongated testis (cf. Lepidosteus), but in existing fishes the series is as a rule restricted to a comparatively short anteroposterior extent. In Selachians the vasa efferentia are restricted to the anterior end of testis and kidney, and are connected by a longitudinal canal ending blindly in front and behind. The number of vasa efferentia varies and in the rays (Raia, Torpedo) may be reduced to a single one opening directly into the front end of the mesonephric duct. The anterior portion of the mesonephros is much reduced in size in correlation with the fact that it has lost its renal function. The hinder part, which is the functional kidney, is considerably enlarged. The primary tubules of this region of the kidney have undergone a modification of high morphological interest. Their distal portions have become much elongated, they are more or less fused, and their openings into the mesonephric duct have undergone backward migration until they open together either into the mesonephric duct at its posterior end or into the urinogenital sinus independently of the mesonephric duct. The mesonephric duct is now connected only with the anterior part of the kidney, and serves merely as a vas deferens or sperm duct. In correlation with this it is somewhat enlarged, especially in its posterior portion, to form a vesicula seminalis.
The morphological interest of these features lies in the fact that they represent a stage in evolution which carried a little farther would lead to a complete separation of the definitive kidney (metanephros) from the purely genital anterior section of the mesonephros (epididymis), as occurs so characteristically in the Amniota.
Dipneusti.—In Lepidosiren[24] a small number (about half a dozen) of vasa efferentia occur towards the hind end of the vesicular part of the testis and open into Malpighian bodies. In Protopterus the vasa efferentia are reduced to a single one on each side at the extreme hind end of the testis.
![]() | |
| Graham Kerr, Proc. Zool. Soc. London. | |
| Fig. 12.—Diagram illustrating Connexion between Kidney and Testis in Various Groups of Fishes. | |
A, Distributed condition of vasa efferentia (Acipenser, Lepidosteus). B, Vasa efferentia reduced to a few at the hind end (Lepidosiren). C, Reduction of vasa efferentia to a single one posteriorly (Protopterus). | D, Direct communication between testis and kidney duct (Polypterus, Teleosts). c.f, Nephrostome leading from Malpighian coelom into kidney tubule. T1, Functional region of testis. T2, Vesicular region of testis. WD, Mesonephric duct. |
Teleostomi.—In the actinopterygian Ganoids a well-developed testicular network is present; e.g. in Lepidosteus[25] numerous vasa efferentia arise from the testis along nearly its whole length and pass to a longitudinal canal lying on the surface of the kidney, from which in turn transverse canals lead to the Malpighian bodies. (In the case of Amia they open into the tubules or even directly into the mesonephric duct.) In the Teleosts and in Polypterus there is no obvious connexion between testis and kidney, the wall of the testis being continuous with that of its duct, much as is the case with the ovary and its duct in the female. In all probability this peculiar condition is to be explained[26] by the reduction of the testicular network to a single vas efferens (much as in Protopterus or as in Raia and various anurous Amphibians at the front end of the series) which has come to open directly into the mesonephric duct (cf. fig. 12).
Organs of the Mesenchyme.—In vertebrates as in all other Metazoa, except the very lowest, there are numerous cell elements which no longer form part of the regularly arranged epithelial layers, but which take part in the formation of the packing tissue of the body. Much of this forms the various kinds of connective tissue which fill up many of the spaces between the various epithelial layers; other and very important parts of the general mesenchyme become specialized in two definite directions and give rise to two special systems of organs. One of these is characterized by the fact that the intercellular substance or matrix assumes a more or less rigid character—it may be infiltrated with salts of lime—giving rise to the supporting tissues of the skeletal system. The other is characterized by the intercellular matrix becoming fluid, and by the cell elements losing their connexion with one another and forming the characteristic fluid tissue, the blood, which with its well-marked containing walls forms the blood vascular system.
Skeletal System.—The skeletal system may be considered under three headings—(1) the chordal skeleton, (2) the cartilaginous skeleton and (3) the osseous skeleton.
