1. Chordal Skeleton.—The most ancient element of the skeleton appears to be the notochord—a cylindrical rod composed of highly vacuolated cells lying ventral to the central nervous system and dorsal to the gut. Except in Amphioxus—where the condition may probably be secondary, due to degenerative shortening of the central nervous system—the notochord extends from a point just behind the infundibulum of the brain (see below) to nearly the tip of the tail. In ontogeny the notochord is a derivative of the dorsal wall of the archenteron. The outer layer of cells, which are commonly less vacuolated and form a “chordal epithelium,” soon secretes a thin cuticle which ensheaths the notochord and is known as the primary sheath. Within this there is formed later a secondary sheath, like the primary, cuticular in nature. This secondary sheath attains a considerable thickness and plays an important part in strengthening the notochord. The notochord with its sheaths is in existing fishes essentially the skeleton of early life (embryonic or larval). In the adult it may, in the more primitive forms (Cyclostomata, Dipneusti), persist as an important part of the skeleton, but as a rule it merely forms the foundation on which the cartilaginous or bony vertebral column is laid down.

2. Cartilaginous or Chondral Skeleton.—(A) Vertebral column.[27] In the embryonic connective tissue or mesenchyme lying just outside the primary sheath of the notochord there are developed a dorsal and a ventral series of paired nodules of cartilage known as arcualia (fig. 13, d.a, v.a). The dorsal arcualia are commonly prolonged upwards by supradorsal cartilages which complete the neural arches and serve to protect the spinal cord. The ventral arcualia become, in the tail region only, also incorporated in complete arches—the haemal arches. In correlation with the flattening of the body of the fish from side to side the arches are commonly prolonged into elongated neural or haemal spines.

The relations of the arcualia to the segmentation of the body, as shown by myotomes and spinal nerves, is somewhat obscure. The mesenchyme in which they arise is segmental in origin (sclerotom), which suggests that they too may have been primitively segmental, but in existing fishes there are commonly two sets of arcualia to each body segment.

In gnathostomatous fishes the arcualia play a most important part in that cartilaginous tissue derived from them comes into special relationships with the notochord and gives rise to the vertebral column which functionally replaces this notochord in most of the fishes. This replacement occurs according to two different methods, giving rise to the different types of vertebral column known as chordacentrous and arcicentrous.

(a) Chordacentrous type. An incipient stage in the evolution of a chordacentrous vertebral column occurs in the Dipneusti, where cartilage cells from the arcualia become amoeboid and migrate into the substance of the secondary sheath, boring their way through the primary sheath (fig. 13, C). They wander throughout the whole extent of the secondary sheath, colonizing it as it were, and settle down as typical stationary cartilage cells. The secondary sheath is thus converted into a cylinder of cartilage. In Selachians exactly the same thing takes place, but in recent forms development goes a step further, as the cartilage cylinder becomes broken into a series of segments, known as vertebral centra. The wall of each segment becomes much thickened in the middle so that the notochord becomes constricted within each centrum and the space occupied by it is shaped like the cavity of a dice-box. When free from notochord and surrounding tissues such a cartilaginous centrum presents a deep conical cavity at each end (amphicoelous).

From Wiedersheim, Grundriss der vergleichenden Anatomie, by permission ofGustav Fischer.
Fig. 13.—Diagrammatic transverse sections to illustrate themorphology of the vertebral column.

A, Primitive conditions as seen in any young embryo.

B, Condition as it occurs in Cyclostomata, sturgeons, embryos of bony Actinopterygians.

C, Condition found in Selachians and Dipnoans.

D and E, Illustrating the developmental process in bony Actinopterygians and higher vertebrates.

c, Centrum.

d.a, Dorsal arcualia.

n.a, Neural arch.

nc, Notochord.

nc.ep, Chordal epithelium.

n.sp, Neural spine.

sh.1, Primary sheath.

sh.2, Secondary sheath.

sk.l, Connective tissue.

tr.p, Transverse process.

v.a, Ventral arcualia.

A secondary modification of the centrum consists in the calcification of certain zones of the cartilaginous matrix. The precise arrangement of these calcified zones varies in different families and affords characters which are of taxonomic importance in palaeontology where only skeletal structures are available (see [Selachians]).

(b) Arcicentrous type. Already in the Selachians the vertebral column is to a certain extent strengthened by the broadening of the basis of the arcualia so as partially to surround the centra. In the Teleostomes, with the exceptions of those ganoids mentioned, the expanded bases of the arcualia undergo complete fusion to form cartilaginous centra which, unlike the chordacentrous centra, lie outside the primary sheath (figs. 13, D and E). In these forms no invasion of the secondary sheath by cartilage cells takes place. The composition of the groups of arcualia which give rise to the individual centrum is different in different groups. The end result is an amphicoelous or biconcave centrum in general appearance much like that of the Selachian.

In Lepidosteus the spaces between adjacent centra become filled by a secondary development of intervertebral cartilage which then splits in such a way that the definitive vertebrae are opisthocoelous, i.e. concave behind, convex in front.