(i.)

∫∞0 xa−1dx = π, (1 > a > 0),
1 + x sin aπ

(ii.)

∫∞0 xa−1 − xb−1dx = π (cot aπ − cot bπ), (0 < a or b < 1),
1 − x

(iii.)

∫∞0 xa−1 log xdx = π2, (a > 1),
x − 1 sin2 aπ

(iv.)

∫∞0 x2 · cos 2x · e−x2 dx = −1⁄4 e−1 √π,

(v.)

∫10 1 − x2 dx= log tan π,
1 + x4 log x8