(vi.)

∫∞0 sin mxdx = ½ ( 1 1+ 1),
e2πx − 1 emm 2

(vii.)

∫π0 log (1 − 2α cos x + α2) dx = 0 or 2π log α according as α < or > 1,

(viii.)

∫∞0 sin xdx = ½ π,
x

(ix.)

∫∞0 cos axdx = ½ πb−1 e−ab,
x2 + b2

(x.)

∫∞0 cos ax − cos bxdx = ½ π (b − a),
x2