From the formula for loge (p/q) we may deduce the following very convergent series for loge2, loge3 and loge5, viz.:—

loge 2 = 2 (7P  + 5Q  + 3R), loge 3 = 2 (11P + 8Q  + 5R), loge 5 = 2 (16P + 12Q + 7R),

where

P = 1+ 1⁄3 · 1+ 1⁄5 · 1+ &c.
31 (31)3(31)5
Q = 1+ 1⁄3 · 1+ 1⁄5 · 1+ &c.
49 (49)3(49)5
R = 1+ 1⁄3 · 1+ 1⁄5 · 1+ &c.
161 (161)3(161)5

The following still more convenient formulae for the calculation of loge 2, loge 3, &c. were given by J. Couch Adams in the Proc. Roy. Soc., 1878, 27, p. 91. If

a = log 10= −log ( 1 − 1), b = log 25= −log ( 1 − 4),
9 1024 100
c = log 81= log ( 1 + 1),   d = log 50= −log ( 1 − 2),
80 8049 100
e = log 126= log ( 1 + 8),
125 1000