then

log 2 = 7a − 2b + 3c, log 3 = 11a − 3b + 5c, log 5 = 16a − 4b + 7c,

and

log 7 = 1⁄2 (39a − 10b + 17c − d) or = 19a − 4b + 8c + e,

and we have the equation of condition,

a − 2b + c = d + 2e.

By means of these formulae Adams calculated the values of loge 2, loge 3, loge 5, and loge 7 to 276 places of decimals, and deduced the value of loge 10 and its reciprocal M, the modulus of the Briggian system of logarithms. The value of the modulus found by Adams is

Mo = 0.4342944819032518276511289
1891660508229439700580366
6566114453783165864649208
8707747292249493384317483
1870610674476630373364167
9287158963906569221064662
8122658521270865686703295
9337086965882668833116360
7738490514284434866676864
6586085135561482123487653
4354343573172538356221868
25  

which is true certainly to 272, and probably to 273, places (Proc. Roy. Soc., 1886, 42, p. 22, where also the values of the other logarithms are given).

If the logarithms are to be Briggian all the series in the preceding formulae must be multiplied by M, the modulus; thus,