In Regular Coursed Rubble all the stones in one course are of the same height.

Block-in-course is the name applied to a form of stone walling that has some of the characteristics of ashlar but the execution of which is much rougher. The courses are usually less than 12 in. high. It is much used by engineers for waterside and railway work where a good appearance is desired.

The Angles or Quoins of rubble-work are always carefully and precisely worked and serve as a gauge for the rest of the walling. Frequently the quoins and jambs are executed in ashlar, which gives a neat and finished appearance and adds strength to the work.

The name Ashlar is given, without regard to the finish of the face of the stone, to walling composed of stones carefully dressed, from 12 to 18 in. deep, the mortar joints being about an eighth of an inch or less in thickness. No stone except the hardest should exceed in length three times its depth when required to resist a heavy load and its breadth should be from one and a half to three times its depth. The hardest stone may have a length equal to four or perhaps five times its depth and a width three times its depth. The face of ashlar-work may be plain and level, or have rebated, chamfered, or moulded joints.

The great cost of this form of stonework renders the employment of a backing of an inferior nature very general. This backing varies according to the district in which the building operations are being carried on, being rubble stonework in stone Backing to Stonework. districts and brick or concrete elsewhere, the whole being thoroughly tied together both transversely and longitudinally with bondstones. In England a stone much used for backing ashlar and Kentish rag rubble-work is a soft sandstone called “hassock.” In the districts where it is quarried it is much cheaper than brickwork. (For brickbacking see [Brickwork].) Ashlar facing usually varies from 4 to 9 in. in thickness. The work must not be all of one thickness, but should vary in order that effective bond with the backing may be obtained. If the work is in courses of uneven depth the narrow courses are made of the greater thickness and the deep courses are narrow. It is sometimes necessary to secure the stone facing back with iron ties, but this should be avoided wherever possible, as they are liable to rust and split the stonework. When it is necessary to use them they should be covered with some protective coating. The use of a backing to a stone wall, besides lessening the cost, gives a more equable temperature inside the building and prevents the transmission of wet by capillary attraction to the interior, which would take place if single stones were used for the entire thickness.

All work of this description must be executed in Portland cement, mortar of good strength, to avoid as much as possible the unequal settlement of the deep courses of stone facing and the narrower courses of the brick or rough stone backing. If the backing is of brick it should never be less than 9 in. thick, and whether of stone or brick it should be levelled up in courses of the same thickness as the ashlar.

There are many different sorts of walling, or modes of structure, arising from the nature of the materials available in various localities. That is perhaps of most frequent occurrence in which Walling. either squared, broken, or round flints are used. This, when executed with care, has a distinctly decorative appearance. To give stability to the structure, lacing courses of tiles, bricks or dressed stones are introduced, and brick or stone piers are built at intervals, thus forming a flint panelled wall. The quoins, too, in this type of wall are formed in dressed stone or brick work.

Uncoursed rubble built with irregular blocks of ragstone, an unstratified rock quarried in Kent, is in great favour for facing the external walls of churches and similar works (fig. 5).

Fig. 5.—(¼ in. = 1 ft.)

Pointing.—As with brickwork this is generally done when the work is completed and before the scaffolding is removed. Suitable weather should be chosen, for if the weather be either frosty or too hot the pointing will suffer. The joints are raked out to a depth of half an inch or more, well wetted, and then refilled with a fine mortar composed specially to resist the action of the weather. This is finished flat or compressed with a special tool to a shaped joint, the usual forms of which are shown in fig. 6.