This separation presents considerable difficulty, because the metal is not precipitated as a compact mass on the platinum. The bismuth is always obtained in the same form, no matter whether it is precipitated from an acid solution, or from the double ammonium oxalate, or, finally, from a solution to which potassium tartrate has been added. As large a surface as possible must be used, and the dish piled to the rim; then, if the quantity of bismuth is small, the washing with water, alcohol, and ether may be effected without any loss of the element. If small quantities of the metal separate from the dish, they must be collected on a tared filter, and determined separately. In our experiments, an excess of ammonium oxalate was added to a nitric acid solution of bismuth. During the electrolytic decomposition, a separation of the peroxide was observed at the positive electrode, which, however, slowly disappeared. In order to prevent the reduced metal from oxidation, the last traces of water are completely removed by repeated washings with alcohol and anhydrous ether.
DETERMINATION OF LEAD.
The nitric solution of lead acts similarly to that of manganese. When the amount of peroxide separated is so large that it does not adhere firmly, and becomes mechanically precipitated on the negative electrode, it becomes impossible to complete the estimation without loss from the solution of the peroxide, and the results cannot be accepted.
If the double oxalate is submitted to electrolysis, the whole of the lead is separated out in its metallic state, but it is so rapidly oxidized by the air that it is very seldom that it can be dried without decomposition even when the operation is conducted in a current of illuminating gas. The electrolytic estimation of this element cannot be recommended.
DETERMINATION OF COPPER.
The copper may be very easily and rapidly separated from the double ammonium oxalate salt, provided a sufficient excess of ammonium oxalate is present. Weak currents cannot be employed for the determination of this element when it is present in large quantities, for under such circumstances the metal does not adhere with sufficient firmness to the electrode. We employed a current which corresponded to an evolution of 330 c.c. of gas per hour, and we were able to precipitate 0.15 gramme metallic copper in about twenty-five minutes.
DETERMINATION OF CADMIUM.
When the cadmium ammonium oxalate is submitted to the action of the electric current, the metal is thrown down in the form of a gray coating, which does not adhere very firmly to the electrode, but, however, sufficiently so as not to become separated on careful washing.
DETERMINATION OF TIN.
Tin may be easily estimated by electrolysis; it can be separated from its hydrochloric acid solution, or from its double salt with ammonium oxalate, as a beautiful silver gray coating on the platinum. When the ammonium oxalate is substituted by the potassium salt, the operation becomes more difficult, as a basic salt is formed at the opposite pole, and is not easily reduced. If the tin is separated from an acid solution, the current must not be interrupted while the washing takes place, a precaution which it is not necessary to follow when the ammonium oxalate is used. When the tin is dissolved from the platinum dish, it acts like the zinc; that is to say, a black coating is left on the electrode.