DETERMINATION OF ANTIMONY.
Antimony may be precipitated in its metallic state from a hydrochloric acid solution, but it does not adhere very firmly to the electrode. If potassium oxalate is added to a solution of the trichloride, the antimony may be readily reduced, but the metal adheres still less firmly to the electrode than it did in the first instance. An adherent coating may be obtained by adding an alkaline tartrate, but in that case the separation takes place too slowly. The precipitation of antimony may be very readily effected from solutions of its sulpho salts.
To a liquid, which may contain free hydrochloric acid, hydrogen sulphide is added, then neutralized with ammonium hydrate, and saturated with ammonium sulphide in excess. The reduction may be accelerated by the addition of some ammonium sulphate. The antimony separates out as a fine, light gray precipitate on the electrode, and which adheres very firmly, provided the precipitation has not been carried on too rapidly, i. e., if the current employed for the reduction was not too strong.
When the reduction has been completed, the supernatant liquid is poured off, and the residue washed in the ordinary manner.
DETERMINATION OF ARSENIC.
Arsenic cannot be completely separated from either its aqueous hydrochloric acid, or from a solution to which ammonium oxalate has been added in excess. From its aqueous as well as from its oxalate solution, a portion of the metal may be separated, but if the current is passed through its hydrochloric acid solution for a sufficient length of time, all the arsenic will be volatilized as arsenious hydride (AsH3).
SEPARATION OF IRON FROM MANGANESE.
If a solution of ferric oxide and manganese ammonium oxalate is submitted to electrolysis, without the previous addition of ammonium oxalate, the characteristic color of permanganic acid immediately makes its appearance, and the peroxide gradually precipitates itself on the positive, while the iron is deposited on the negative electrode. When the examination is made in the above manner, it is impossible to separate the two metals, for the peroxide will bring down with it a considerable quantity of ferric hydrate. The separation of the two metals is only possible when the precipitation of the manganese peroxide is prevented, until the greater portion of the iron has been deposited. This result may be attained by adding sodium phosphate, or, better still, by the addition of ammonium oxalate in great excess. In both cases the characteristic coloration from permanganic acid is developed by the action of the current at the positive pole; this, however, disappears in the direction of the negative electrode. After the greater portion of the ammonium oxalate has been converted into carbonate, the coloration and necessarily the formation of manganese peroxide begins.
Ammonium oxalate is added to the solution, and heat applied; then three or four grammes more of ammonium oxalate are dissolved in the liquid, which is then immediately submitted to electrolysis. When the amount of manganese is small, the separation of the two elements takes place very rapidly, and the results are accurate. If the amount of manganese is more than double that of iron, the separation of the latter will take a much longer time. Then, in order to effect a complete separation of the two elements, it is necessary to redissolve the deposited manganese in oxalic acid (the acid is added, without interrupting the current, until the liquid becomes red), and the current is allowed to continue its action.
It was found desirable, in effecting this separation, not to employ too strong a current (two Bunsen elements will suffice), and only to increase the strength of the current when it is necessary, in consequence of a large amount of manganese being present, to redissolve the peroxide.