The visit of the French squadron under Admiral Gervais to England has revived in many a nautical mind the recollection of that oft-repeated controversy as to the relative advantages of armored belts and citadels. Now that a typical French battleship of the belted class has been brought so prominently to our notice, it may not be considered an inappropriate season to dwell shortly upon the various idiosyncrasies of thought which have produced, in our two nations, types of war vessels differing so materially from each other as to their protective features. In order to facilitate a study of these features, the accompanying sketch has been prepared, which shows at a glance the relative quantities of armored surface that afford protection to the Nile, the Camperdown, the Marceau, the Royal Sovereign, and the Dupuy de Lôme; the first three of these vessels having been actually present at the review on the 21st of August and the two others having been selected as the latest efforts of shipbuilding skill in France and Great Britain. Nothing but the armored surface in each several class is shown, the same scale having been adhered to in all cases.
Two impressions cannot fail to be made upon our minds, both as to French and British armor plate disposition. These two impressions, as regards Great Britain, point to the Royal Sovereign as embodying the idea of two protected stations with a narrow and partial connecting belt; and to the Nile as embodying the idea of a vast and absolutely protected raft. For France, we have the Marceau as representing the wholly belted type with four disconnected but protected stations; and the Dupuy de Lôme, in which the armor plating is thinned out to a substance of only 4 in., so as entirely to cover the sides of the vessel down to 5 ft, below the water line; this thickness of plating being regarded as sufficient to break up upon its surface the dreaded mélinite or guncotton shell, but permitting the passage of armor-piercing projectiles right through from side to side; provision being made to prevent damage from these latter to engines and vitals by means of double-armored decks below, with a belt of cellulose between them. Thus, as we have explained, two prominent ideas are present in the disposition of armor upon the battleships of Great Britain, as well as in that of the battleships of France. But, while in our country these two ideas follow one another in the natural sequence of development, from the Inflexible to the Royal Sovereign, the citadel being gradually extended into two redoubts, and space being left between the redoubts for an auxiliary battery—this latter being, however, singularly placed above the armored belt, and not within its shelter—in France, on the other hand, we find the second idea to be a new departure altogether in armored protection, or rather to be a return to the original thought which produced the Gloire and vessels of her class. In point of fact, while we have always clung to the armored citadel, France has discarded the belt altogether, and gone in for speed and light armor, as well as for a much lighter class of armament. Time alone, and the circumstances of actual warfare, can prove which nation has adopted the wisest alternative.
A glance at the engraving will show the striking contrast between the existing service types as to armored surface. The Marceau appears absolutely naked by the side of the solidly armed citadel of the Nile. The contrast between the future types will be, of course, still more striking, for the reasons given in the last paragraph. But while remarking upon the paucity of heavy plating as exhibited in the service French battleships, we would say one word for the angle at which it is placed. The receding sides of the great vessels of France give two very important attributes in their favor. In the first place, a much broader platform at the water line is afforded to secure steadiness of the ship and stable equilibrium, and the angle at which the armor rests is so great as to present a very oblique surface to the impact of projectiles. The trajectory of modern rifled guns is so exceedingly flat that the angle of descent of the shot or shell is practically nil. Were the sides of the Royal Sovereign to fall back like those of the Marceau or Magenta, we seriously doubt whether any projectile, however pointed, would effect penetration at all. We conclude, then, that a comparison of the Marceau with the Nile as regards protective features is so incontestably in favor of the latter, that they cannot be classed together for a moment. In speed, moreover, though this is not a point under consideration, the Nile has the advantage. It is impossible, however, to avoid the conviction that the Dupuy de Lôme would be a most powerful and disagreeable enemy for either of the eight great ironclads of Great Britain now building to encounter on service. The Hood and Royal Sovereign have many vulnerable points. At any position outside of the dark and light colored portions of armor plate indicated in our drawing, they could be hulled with impunity with the lightest weapons. It is true that gun detachments and ammunition will be secure within the internal "crinolines," but how about the other men and matériel between decks? Now, the Dupuy de Lôme may be riddled through and through bf a 13½ in. shell if a Royal Sovereign ever succeeds in catching her; but from lighter weapons her between decks is almost secure. We cannot help feeling a sneaking admiration for the great French cruising battleship, with her 6,300 tons and 14,000 horse power, giving an easy speed of 20 knots in almost any weather, and protected by a complete 4 in. steel panoply, which will explode the shells of most of our secondary batteries on impact, or prevent their penetration. In fact, there is little doubt that the interior of the Trafalgar, whether as regards the secondary batteries or the unarmored ends, would be probably found to be a safer and pleasanter situation, in the event of action with a Dupuy de Lôme, than either of the naked batteries or the upper works of the Royal Sovereign. This is what Sir E.J. Reed was so anxious to point out at the meeting of naval architects in 1889, when he described the modern British battleship as a "spoiled Trafalgar." There was perhaps some reason in what he said.—The Engineer.
DEMOLITION OF ROCKS UNDER WATER WITHOUT EXPLOSIVES-LOBNITZ SYSTEM.[1]
By EDWIN S. CRAWLEY.
The methods of demolishing rocks by the use of explosives are always attended by a certain amount of danger, while at the same time there is always more or less uncertainty in regard to the final result of the operation. Especially is this the case when the work must be carried on without interrupting navigation and in the vicinity of constructions that may receive injury from the explosions.
Such were the conditions imposed in enlarging the Suez Canal in certain parts where the ordinary dredges could not be used.
Mr. Henry Lobnitz, engineer at Renfrew, has contrived a new method of procedure, designed for the purpose of enlarging and deepening the canal in those parts between the Bitter Lakes and Suez, where it runs over a rocky bed. It was necessary to execute the work without interrupting or obstructing traffic on the canal.