Some animals produce vast numbers of eggs or young; for example, the herring, 20,000; a certain eel, several millions; and the oyster from 500,000 to 16,000,000. Supposing we start with one oyster and let it produce one million of eggs. Let each egg produce an oyster which in turn produces[19] one million of eggs, and let these go on increasing at the same rate. In the second generation there would be one million million of oysters, and in the fourth, i.e. the great great grandchildren of the first oyster, there would be one million million million million of oysters. The shells of these oysters would just about make a mass the size of the earth.

But it is obvious that all the new individuals of any animal produced do not live their normal duration of life. All animals produce far more young than can survive. As a matter of fact, which we may verify by observation, the number of individuals of animals in a state of nature is, in general, about stationary. There are about as many squirrels in the forest one year as another, about as many butterflies in the field, about as many frogs in the pond. Some species increase in numbers, as for example, the rabbit in Australia, which was introduced there in 1860 and in fifteen years had become so abundant as to be a great pest. Other species decrease, as the buffaloes, which once roamed our great plains in enormous herds and are now represented by a total of a few hundred individuals, and the passenger-pigeon, whose migrating flocks ten years ago darkened the air for hours in parts of the Mississippi valley, where now it is a rare bird. But the hand of man is the agent which has helped to increase or to check the multiplication of these animals. In nature such quick changes rarely occur.

The struggle for existence.—The numbers of animals are stationary because of the tremendous mortality occasioned by the constant preying on eggs and young and adults by other animals, because of strenuous and destructive climatic and meteorological conditions, and because there is not space and food for all born, not even, indeed, for all of a single species, let alone all of the hundreds of thousands of species which now inhabit the earth. There is thus constantly going on among animals a fearful struggle for existence. In the case of any individual this struggle is threefold: (1) with the other individuals of his own species for food and space; (2) with the individuals of other species, which prey on him, or serve as his prey, or for food and space; and (3) finally with the conditions of life, as with the cold of winter, the heat of summer, or drouth and flood. Sometimes one of these struggles is the severer, sometimes another. With the communal animals the struggle among individuals is lessened—they help each other; but when the struggle with the conditions of life are easiest, as in the tropics or in the ocean, the struggle among individuals becomes intensified. Each strives to feed itself, to save its own life, to produce and safeguard its young. But in spite of all their efforts only a few individuals out of the hosts produced live to maturity. The great majority are destroyed in the egg or in adolescence.

Variation and natural selection.—What individuals survive of the many which are born? Those best fitted for life; those which are a little stronger, a little swifter, a little hardier, a little less readily perceived by their enemies, than the others. They are the winners in the struggle for existence; they are the survivors. And this survival of the fittest, as it is called, is practically a process of selection by Nature. Nature selects the fittest to live and to perpetuate the species. Their progeny again undergo the struggle and the selecting process, and again the fittest live. And so on until adjustment or harmonizing of animals' bodies and habits with the conditions of life, with their environment, comes to be extremely fine and nearly perfect.

It is evident, of course, that such a natural selection or survival of the fittest and consequent adaptation to environment presupposes differences among the individuals of a species. And this is an observed fact. No two individuals, although of the same brood, are exactly alike at birth; there always exist slight variations in structure and performance of functions. And these slight variations are the differences which determine the fate of the individual. One individual is a little larger or stronger or swifter or hardier than its mates. The existence of this variation we know from our observation of the young kittens or puppies of a brood. So it is with all animals. Thus natural selection depends upon two factors, namely, the excess in the production of new individuals and the consequent struggle for existence among them, and the existence of variations which give certain individuals slight advantages in this struggle.

Adaptation and adjustment to surroundings.—The action of natural selection obviously must, and does, result in a fine adaptation and adjustment of the structure and habits of animals to their surroundings. If a certain species or group of individuals cannot adapt itself to its environment, it will be crowded out by others that can. A slight advantageous variation comes in time by the continuously selective process to be a well-developed adaptation.

The diverse forms and habits possessed by animals are chiefly adaptations to their special conditions of life. The talons and beak of the eagle, the fishing-pouch of the pelican, the piercing chisel-like bill of the woodpecker, and the sensitive probing-bill of the snipe are adaptations connected with the special feeding habits of these birds. The quills of the porcupine, the poison-fangs of the rattlesnake, the sting of the yellow-jacket, and the antlers of the deer are adaptations for self-defence. The fins and gills of fishes, the shovel-like fore feet of the mole, the wings of birds and insects and bats, the toe-pads of the tree-toad, the leaping-legs of the grasshopper, all these are adaptations concerned with the special life-surroundings of these animals.

Adaptations may relate to habits and behavior as well as to structure. Plainly adaptive are such habits as the migration of birds and some other animals, most of the habits connected with food-getting, and especially striking and interesting those connected with the production and care of the young, including nest-making and home-building.

Species-forming.—It is evident that through the cumulative action of natural selection, animals of a structural type considerably (even unlimitedly) different from any original type may in time be produced by the gradual modification of the original type under new conditions. If, for example, a few individuals of a mainland species should come to be thrown as waifs of wave and storm upon an island, and if these should be able to maintain themselves there and produce young, increasing so as to occupy the new territory, there would be produced in time a new type of individual conforming or adapted to the conditions obtaining in the island, these conditions being, of course, almost certainly different from those of the mainland. Thus as an offshoot or derivation from the original type still existing on the mainland we should have the new island-inhabiting type. Now when these island individuals come to differ so much, structurally and physiologically, from the mainland type that they cannot, even if opportunity offers, successfully mate or interbreed with mainland individuals the island type constitutes a new species. That is, our distinction between species rests not only on structural differences, but on the impossibility of interbreeding (at least for the production of fertile young). Such a combination of the action of natural selection and the condition of isolation (as illustrated by the case of island animals), is probably the most potent factor in the production of new species of animals (and plants).