But suppose we were to say, “You love a cheerful blaze, can afford to pay for it, and therefore care not how much coal you waste in obtaining it. We also love a cheerful blaze, but have a great aversion to coal-smoke and tarry vapors; and we find that we can make a beautiful fire, quite inoffensive even in the middle of the room, provided we feed it with stale quartern loaves. We know that such fuel is expensive, but can afford to pay for it, and choose to do so.” Would he not be shocked at the sight of the blazing loaves, if this extravagance were carried out?

This popular inconsistency of disregarding the waste of a valuable and necessary commodity, of which the supply is limited and unrenewable, while we have such proper horror of wilfully wasting another similar commodity which can be annually replaced as long as man remains in living contact with the earth, will gradually pass away when rational attention is directed to the subject. If the recent very mild suggestion of a coal-famine does something towards placing coal on a similar pedestal of popular veneration to that which is held by the “staff of life,” the million a week that it has cost the coal consumer will have been profitably invested.

Many who were formerly deaf to the exhortations of fuel economists are now beginning to listen. “Forty shillings per ton” has acted like an incantation upon the spirit of Count Rumford. After an oblivion of more than eighty years, his practical lessons have again sprung up among us. Some are already inquiring how he managed to roast 112 lbs. of beef at the Foundling Hospital with 22 lbs. of coal, and to use the residual heat for cooking the potatoes, and why it is that with all our boasted progress we do not now in the latter third of the nineteenth century, repeat that which he did in the eighteenth.

The fact that the consumption of coal in London during the first four months of 1873 has, in spite of increasing population, amounted to 49,707 tons less than the corresponding period of 1872, shows that some feeble attempts have been made to economize the domestic consumption of fuel. One very useful result of the recent scarcity of coal has been the awakening of a considerable amount of general interest in the work of stock-taking, a tedious process which improvident people are too apt to shirk, but which is quite indispensable to sound business proceedings, either of individuals or nations.

There are many discrepancies in the estimates that have been made of the total available quantity of British coal. The speculative nature of some of the data renders this inevitable, but all authorities appear to agree on one point, viz., that the amount of our supplies will not be determined by the actual total quantity of coal under our feet, but by the possibilities of reaching it. This is doubtless correct, but how will these possibilities be limited, and what is the extent or range of the limit? On both these points I venture to disagree with the eminent men who have so ably discussed this question. First, as regards the nature of the limit or barrier that will stop our further progress in coal-getting. This is generally stated to be the depth of the seams. The Royal Commissioners of 1870 based their tables of the quantity of available coal in the visible and concealed coal-fields upon the assumption that 4000 feet is the limit of possible working. This limit is the same that was taken by Mr. Hull ten years earlier. Mr. Hull, in the last edition of “The Coal Fields of Great Britain,” p. 326, referring to Professor Ramsay’s estimate, says, “These estimates are drawn up for depths down to 4000 feet below the surface, and even beyond this limit; but with this latter quantity it is scarcely necessary that we should concern ourselves.” I shall presently show reasons for believing that the time may ultimately arrive when we shall concern ourselves with this deep coal, and actually get it; while, on the other hand, that remote epoch will be preceded by another period of practical approximate exhaustion of British coal supply, which is likely to arrive long before we reach a working depth of 4000 feet.

The Royal Commissioners estimate that within the limits of 4000 feet we have hundreds of square miles of attainable coal capable of yielding, after deducting 40 per cent for loss in getting, etc., 146,480 millions of tons; or, if we take this with Mr. Hull’s deduction of one-twentieth for seams under two feet in thickness, there remains 139,000 millions of tons, which, at present rate of consumption, would last about 1200 years. But the rate of consumption is annually increasing, not merely on account of increasing population, but also from the fact that mechanical inventions are perpetually superseding hand labor, and the source of power in such cases, is usually derived from coal. This consideration induced Professor Jevons, in 1865, to estimate that between 1861 and 1871 the consumption would increase from 83,500,000 tons to 118,000,000 tons. Mr. Hunt’s official return for 1871 shows that this estimate was a close approximation to the truth, the actual total for 1871 having been 117,352,028 tons. At this rate of an arithmetical increase of three and a half tons per annum, 139,000 millions of tons would last but 250 years. Mr. Hull, taking the actual increase at three millions of tons per annum, extends it to 276 years. Hitherto the annual increase has followed a geometrical, rather than arithmetical progress, and those who anticipate a continuance of this allow us a much shorter lease of our coal treasures. Mr. Price Williams maintains that the increase will proceed in a diminishing ratio like that of the increase of population; and upon this basis he has calculated that the annual consumption will amount to 274 millions of tons a hundred years hence, and the whole available stock of coal will last about 360 years.

The latest returns show, for 1872, an output of 123,546,758 tons, which, compared with 1871, gives a rate of increase of more than double the estimate of Mr. Hull, and indicate that prices have not yet risen sufficiently to check the geometrical rate of increase.[24] Mr Hull very justly points out the omission in those estimates which do not “take into account the diminishing ratio at which coal must be consumed when it becomes scarcer and more expensive;” but, on the other hand, he omits the opposite influence of increasing prices on production, which has been strikingly illustrated by the extraordinary number of new coal-mining enterprises that have been launched during the last six months. If we continue as we are now proceeding, a practical and permanent coal famine will be upon us within the lifetime of many of the present generation. By such a famine, I do not mean an actual exhaustion of our coal seams (which will never be effected), but such a scarcity and rise of prices as shall annihilate the most voracious of our coal-consuming industries, those which depend upon abundance of cheap coal, such as the manufacture of pig-iron, etc.[25]

The action of increasing prices has been but lightly considered hitherto, though its importance is paramount in determining the limits of our coal supply; I even venture so far as to affirm that it is not the depth of the coal seams, not the increasing temperature nor pressure as we proceed downwards, nor even thinness of seam, that will practically determine the limits of British coal-getting, but simply the price per ton at the pit’s mouth.

In proof of this, I may appeal to actual practice. Mr. Hull and others have estimated the working limit of thinness at two feet, and agree in regarding thinner seams than this as unworkable. This is unquestionably correct so long as the getting is effected in the usual manner. A collier cannot lie down and hew a much thinner seam than this, if he works as colliers work at present. But the lead and copper miners succeed in working far thinner lodes, even down to the thickness of a few inches, and the gold-digger crushes the hardest component of the earth’s crust to obtain barely visible grains of the precious metal. This extension of effort is entirely determined by market value. At a sufficiently high price the two-feet limit of coal-getting would vanish, and the collier would work after the manner of the lead-miner.

We may safely apply the same reasoning to the limits of depth. The 4000 feet limit of the Royal Commissioners is at present unattainable, simply because the immediately prospective price of coal would not cover the cost of such deep sinking and working; but as prices go up, pits will go down, deeper and deeper still.