The obstacles which are assumed to determine the 4000 feet limit are increasing density due to greater pressure, and the elevation of temperature which proceeds as we go downwards. The first of these difficulties has, I suspect, been very much overstated, if not altogether misunderstood; though it is but fair to add that Mr. Hull, who most prominently dwells upon it, does so with all just and philosophic caution. He says that “it is impossible to speak with certainty of the effect of the accumulative weight of 3000 or 4000 feet of strata on mining operations. In all probability one effect would be to increase the density of the coal itself, and of its accompanying strata, so as to increase the difficulty of excavating,” and he concludes by stating that “in the face of these two obstacles—temperature and pressure, ever increasing with the depth—I have considered it utopian to include in calculations having reference to coal supply any quantity, however considerable, which lies at a greater depth than 4000 feet. Beyond that depth I do not believe that it will be found practicable to penetrate. Nature rises up, and presents insurmountable barriers.”[26]

On one point I differ entirely from Mr. Hull, viz., the conclusion that the increased “density of the coal itself and of its accompanying strata” will offer any serious obstacle. On the contrary, there is good reason to believe that such density is one of the essential conditions for working deep coal. Even at present depths of working, density and hardness of the accompanying strata is one of the most important aids to easy and cheap coal-getting. With a dense roof and floor the collier works vigorously and fearlessly, and he escapes the serious cost of timbering.

Those who have never been underground, and only read of colliery disasters, commonly regard the fire-damp and choke-damp as the collier’s most deadly enemies, but the collier himself has quite as much dread of a rotten roof as of either of these: he knows by sad experience how much bruising, and maiming, and crushing of human limbs are due to the friability of the rock above his head. Mr. Hull quotes the case of the Dunkinfield colliery, where, at a depth of about 2500 feet, the pressure is “so resistless as to crush in circular arches of brick four feet thick,” and to snap a cast-iron pillar in twain; but he does not give any account of the density of the accompanying strata at the place of these occurrences. I suspect that it was simply a want of density that allowed the superincumbent pressure to do such mischief. The circular arches of brick four feet thick were but poor substitutes for a roof of solid rock of 40 or 400 feet in thickness; an arch cut in such a rock would be all key-stone: and I may safely venture to affirm that if, in the deep sinkings of the future, we do encounter the increased density which Mr. Hull anticipates, this will be altogether advantageous. I fear, however, that it will not be so, that the chief difficulty of deep coal-mining will arise from occasional “running in” due to deficient density, and that this difficulty will occur in about the same proportion of cases as at present, but will operate more seriously at the greater depths.

A very interesting subject for investigation is hereby suggested. Do rocks of given composition and formation increase in density as they dip downwards; and if so, does this increase of density follow any law by which we may determine whether their power of resisting superincumbent pressure increases in any approach to the ratio of the increasing pressure to which they are naturally subjected? If the increasing density and power of resistance reaches or exceeds this ratio, deep mining has nothing to fear from pressure. If they fall short of it, the difficulties arising from pressure may be serious. Friability, viscosity, and power of resisting a crushing strain must be considered in reference to this question.

Mr. Hull has collected a considerable amount of data bearing upon the rate of increase of temperature with depth. His conclusions give a greater rate of increase than is generally stated by geologists; but for the present argument I will accept, without prejudice, as the lawyers say, his basis of a range of 1° F. for 60 feet. According to this, the rocks will reach 99.6°, a little above blood-heat, at 3000 feet, and 116.3° at the supposed limit of 4000 feet. It is assumed by Mr. Hull, by the Commissioners, and most other authorities, that this rock temperature of 116° will limit the possibilities of coal-mining. At the average prices of the last three years, or the prospective prices of the next three years, this temperature may be, like difficulties of the thin seams, an insurmountable barrier; but I contend that at higher prices we may work coal at this, and even far higher, rock temperatures; that it matters not how high the thermometer rises as we descend, we shall still go lower and still get coal so long as prices rise with the mercury. Given this condition, and I have no doubt that coal may be worked where the rock temperature shall reach or even exceed 212°. I do not say that we shall actually work coal at such depths; but if we do not, the reason will be, not that the thermometer is too high, but that prices are too low; in other words, value, not temperature, will determine the working limits.

Mr. Leifchild, in the last number of the “Edinburgh Review,” in discussing this question, tells us that “the normal heat of our blood is 98°, and fever heat commences at 100°, and the extreme limit of fever heat may be taken at 112°. Dr. Thudichum, a physician who has specially investigated this subject, has concluded from experiments on his own body at high temperatures, that at a heat of 140° no work whatever could be carried on, and that at a temperature of from 130° to 140° only a very small amount of labor, and that at short periods, was practicable; and further, that human labor daily, and at ordinary periods, is limited by 100° of temperature, as a fixed point, and then the air must be dry, for in moist air he did not think men could endure ordinary labor at a temperature exceeding 90°.”

It may be presumptuous on my part to dispute the conclusions of a physician on such a subject, but I do so nevertheless, as the data required are simple practical facts such as are better obtained by furnace-working than by sick-room experience.

During the hottest days of the summer of 1868 I was engaged in making some experiments in the re-heating furnaces at Sir John Brown & Co.’s works, Sheffield, and carried a thermometer about with me which I suspended in various places where the men were working. At the place where I was chiefly engaged (a corner between two sets of furnaces), the thermometer, suspended in a position where it was not affected by direct radiations from the open furnaces, stood at 120° while the furnace doors were shut. The radiant heat to which the men themselves were exposed while making their greatest efforts in placing and removing the piles was far higher than this, but I cannot state it, not having placed the thermometer in the position of the men. In one of the Bessemer pits the thermometer reached 140°, and men worked there at a kind of labor demanding great muscular effort. It is true that during this same week the puddlers were compelled to leave their work; but the tremendous amount of concentrated exertion demanded of the puddler in front of a furnace, which, during the time of removing the balls, radiates a degree of heat quite sufficient to roast a sirloin of beef if placed in the position of the puddles hands, is beyond comparison with that which would be demanded of a collier working even at a depth giving a theoretical rock temperature of 212°, and aided by the coal-cutting and other machinery that sufficiently high prices would readily command. In some of the operations of glass-making, the ordinary summer working temperature is considerably above 100°, and the radiant neat to which the workmen are subjected far exceeds 212°. This is the case during a “pot setting,” and in the ordinary work of flashing crown glass.

As regards the mere endurance of a high temperature, the well-known experiments of Blagden, Sir Joseph Banks, and others have shown that the human body can endure for short periods a temperature of 260° F., and upwards. My own experience of furnace-work, and of Turkish baths, quite satisfies me that I could do a fair day’s work of six or eight hours in a temperature of 130° F., provided I were free from the encumbrances of clothing, and had access to abundance of tepid water. This in a still atmosphere; but with a moving current of dry air capable of promoting vigorous evaporation from the skin, I suspect that the temperature might be ten or fifteen degrees higher. I enjoy ordinary walking exercise in a well-ventilated Turkish bath at 150°, and can endure it at 180°.

In order to obtain further information on this point, I have written to Mr. Tyndall, the proprietor of the Turkish baths at Newington Butts. He is an architect, who has had considerable experience in the employment of workmen and in the construction of Turkish baths and other hot-air chambers. He says: “Shampooers work in my establishment from four to five hours at a time in a moist atmosphere at a temperature ranging from 105° to 110°. I have myself worked twenty hours out of twenty-four in one day in a temperature over 110°. Once for one half-hour I shampooed in 185°. At the enamel works in Pimlico, belonging to Mr. Mackenzie, men work daily in a heat of over 300°. The moment a man working in a 110° heat begins to drink alcohol, his tongue gets parched, and he is obliged to continue drinking while at work, and the brain gets so excited that he cannot do half the amount. I painted my skylights, taking me about four hours, at a temperature of about 145°; also the hottest room skylights, which took me one hour, coming out at intervals for “a cooler,” at a temperature of 180°. I may add in conclusion, that a man can work well in a moist temperature of 110° if he perspires freely.”