AIR AND THE WIND

The air that surrounds us weighs about one-thirteenth of a pound per cubic foot and exerts a pressure, at sea level, of nearly fifteen pounds per square inch. Its temperature varies from 30° below to 100° above the Fahrenheit zero. The pressure of the air decreases about one-half pound for each thousand feet of altitude; at the top of Mt. Blanc it would be, therefore, only about six pounds per square inch. The temperature also decreases with the altitude. The weight of a cubic foot, or density, which, as has been stated, is one-thirteenth of a pound ordinarily, varies with the pressure and with the temperature. The variation with pressure may be described by saying that the quotient of the pressure by the density is constant: one varies in the same ratio as the other. Thus, at the top of Mt. Blanc (if the temperature were the same as at sea level), the density of air would be about 6/15 × 1/13 = 2/65: less than half what it is at sea level. As to temperature, if we call our Fahrenheit zero 460°, and correspondingly describe other temperatures—for instance, say that water boils at 672°—then (pressure being unchanged) the product of the density and the temperature is constant. If the density at sea level and zero temperature is one-thirteenth pound, then that at sea level and 460° Fahrenheit would be

(0 + 460) / (460 + 460) × 1/13 = 1/26.

These relations are particularly important in the design of all balloons, and in computations relating to aeroplane flight at high altitudes. We shall be prepared to appreciate some of their applications presently.

Generally speaking, the atmosphere is always in motion, and moving air is called wind. Our meteorologists first studied winds near the surface of the ground: it is only of late years that high altitude measurements have been considered practically desirable. Now, records are obtained by the aid of kites up to a height of nearly four miles: estimates of cloud movements have given data on wind velocities at heights above six miles: and much greater heights have been obtained by free balloons equipped with instruments for recording temperatures, pressures, altitude, time, and other data.

When the Eiffel Tower was completed, it was found that the average wind velocity at its summit was about four times that at the base. Since that time, much attention has been given to the contrasting conditions of surface and upper breezes as to direction and velocity.

Air is easily impeded in its movement, and the well-known uncertainties of the weather are closely related to local variations in atmospheric pressure and temperature. When near the surface of the ground, impingement against irregularities therein—hills, cliffs, and buildings—makes the atmospheric currents turbulent and irregular. Where there are no surface irregularities, as on a smooth plain or over water, the friction of the air particles passing over the surface still results in a stratification of velocities. Even on a mountain top, the direction and speed of the wind are less steady than in the open where measured by a captive balloon. The stronger the wind, the greater, relatively, is the irregularity produced by surface conditions. Further, the earth’s surface and its features form a vast sponge for sun heat, which they transfer in turn to the air in an irregular way, producing those convectional currents peculiar to low altitudes, the upper limit of which is marked by the elevation of the cumulus clouds. Near the surface, therefore, wind velocities are lowest in the early morning, rising to a maximum in the afternoon.

Diurnal Temperatures at Different Heights
(From Rotch’s The Conquest of the Air)