Royal Observatory, Greenwich, in Flamsteed’s time[3].

Huygens may be said to have inaugurated the era of long telescopes. He erected instruments of 12 and 23 feet, having an aperture of 2-1/3 inches and powers of 48, 50, and 92. He afterwards produced one 123 feet in focal length and 6 inches in aperture. Chief among his discoveries were the largest satellite of Saturn (Titan) and the true form of Saturn’s ring. Hevelius of Dantzic built an instrument 150 feet long, which he fixed to a mast 90 feet in height, and regulated by ropes and pulleys. Cassini, at the Observatory at Paris, had telescopes by Campani of 86, 100, and 136 French feet in length; but the highest powers he used on these instruments do not appear to have exceeded 150 times. He made such good use of them as to discover three of the satellites of Saturn and the black division in the ring of that planet. The largest object-glasses employed by Hevelius and Cassini were of 6, 7, and 8 inches diameter. This was during the latter half of the 17th century. In 1712 Bradley made observations of Venus, and obtained measures of the planet’s diameter, with a telescope no less than 212 feet in focal length. The instruments alluded to were manipulated with extreme difficulty, and observations had to be conducted in a manner very trying to the observer. Tubes were sometimes dispensed with, the object-glass being fixed to a pole and its position controlled by various contrivances—the observer being so far off, however, that he required the services of a good lantern in order to distinguish it!

The immoderate lengths of refracting-telescopes were necessary, as partially avoiding the effects of chromatic aberration occasioned by the different refrangibility of the seven coloured rays which collectively make white light. In other words, the coloured rays having various indices of refraction cannot be brought to a coincident focus by transmission through a single lens. Thus the red rays have a longer focus than the violet rays, and the immediate effect of the different refractions becomes apparent in the telescopic images, which are fringed with colour and not sharply defined. High magnifying powers serve to intensify the obstacle alluded to, and thus the old observers found it imperative to employ eye-glasses not beyond a certain degree of convexity. The great focal lengths of their object-lenses enabled moderate power to be obtained, though the eye-glass itself had a focus of several inches and magnified very little.

Sir Isaac Newton made many experiments upon colours, and endeavoured to obviate the difficulties of chromatic aberration, but erroneously concluded that it was not feasible. He could devise no means to correct that dispersion of colour which, in the telescopes of his day, so greatly detracted from their effectiveness. His failure seems to have had a prejudicial effect in delaying the solution of the difficulty, which was not accomplished until many years afterwards.

Fig. 3.

Sir Isaac Newton[4].

Fig. 4.