The strata passed through during the sinking throw some light on the past condition of the desert depression, as well as furnishing some points that may have a bearing on the flooding of this section.

The top covering consists of 6 inches of black mud, resting on a crust of chlorides of sodium and magnesium, 7 inches in thickness. The drill on passing through this crust dropped through 22 feet of a black ooze, containing over 50 per cent of water. Tests of the ooze made at the State Mining Bureau laboratory showed it to consist largely of chlorides and carbonates of sodium and magnesium, the soda salts predominating, besides fine sand, iron oxide, and clay, and a small amount of organic matter. The ooze was resting on a hard clay bottom, through which the drill passed for the entire remaining distance, only varied by two or three streaks of cement. From the shore line of the marsh toward the adjacent mountain ranges, the soil consists of a fine sand, containing clay and a notable quantity of mica, and is strewn with well-preserved shells of Planorbis ammon, Gould, Physa humerosa, Gould, and Amnicola protea, Gould.

In a few spots near the northwest end of the marsh the accumulated cases of a species of Caddice worm are found. Northeast of the marsh the surface slopes gradually upward to where the remains of an ancient sea beach are to be seen, stretching to the south and east to where the Colorado River cuts through on its way to the Gulf of California.

Behind the beach extends a mesa to the foot of the San Bernardino range. Across this mesa are evidences of heavy floods coming down the cañons of the back range, carrying large quantities of debris with them, mostly bowlders of mica schists and granitoid rocks, with some quartz intermixed. On the west side of the marsh the surface has but little elevation until the granitic bluffs of the San Jacinto range are reached. These bluffs are coated for a distance of about 25 feet above the plain with a sponge-shaped incrustation from 2 to 3 inches thick, consisting largely of carbonate of lime, chloride of sodium, sand, clay, and oxide of iron; under the glass some of the pores are seen to contain minute shells of the same varieties as found on the sand of the plain. Where arroyos have been cut through the sands of the plains to the depth of several feet, the exposed sections show a stratified arrangement of the sand, having between the layers a thin division of the same varieties of shells as found on the surface, the whole resting on a firm clay bottom. From the position and regularity, as well as the quantity of these shells, on top of the different strata of sand, while but few are seen scattered through the sand layers, a periodicity of the conditions favorable to their existence and growth, as well as a comparatively sudden cessation of the same, must be inferred. These conditions mean an occasional flooding of the depression for a period of time, during which a shallow body of water was maintained, which evaporated as soon as the water supply was shut off. In what manner this can occur will be shown later on. The plain supports a scant growth of desert shrubs, with some mesquite bushes in the vicinity of the few springs that are found scattered over the desert, most of which are saline. The presence of the extensive line of sea beach proves that at some time the gulf has extended much farther inland than at present, covering the whole of this depression. The Colorado River, in its course south to the ocean, built up a flood plain on a higher level that finally shut off the western part from a direct communication with the sea, and evaporation, with a gradual uplifting of this whole section, finally laid it bare, although leaving a great part of it still below the present sea-level. Under these conditions, whenever more water comes down the river than its banks can contain, the silt-formed shores give way to the increased pressure and permit the excess of water to flow to, and gather in, what is termed the river swamp at the back of the flood plain, from whence it either re-enters the river lower down in its course, or finds its way into the depression.

The Salton Marsh at present acts as the catchment basin for the waters draining from the east side of the San Jacinto range, Carizoo Creek, and a part of the San Bernardino Mountain range, and in times of extreme high waters as a reservoir for the excess in the Colorado River. In the month of June, 1891, a steady flow of water entered the depression from the southeast and continued to the northwest uninterruptedly until an area 30 miles long and averaging 10 miles in width was covered to a depth of 6 feet, measured at the end of the Salton Salt Works branch track. When first examined the water showed a density of 7° Baumé, which gradually increased to 25° Baumé. The mother liquor used in making salt at the New Liverpool works usually shows a density of 27° Baumé. This salt water gave rise to the idea that the waters from the gulf had made an inroad through some underground channel, and to prove the source and possible permanency of these waters several investigating parties were sent out. No such previous incursion had been witnessed by the settlers, but inquiry proved that a similar lake existed here in 1849. Finally one of the parties showed that the Colorado River was the source, and then the question was brought to the attention of the State Mining Bureau to investigate as to the probability of the permanency of the lake and its probable effect on the climate of the surrounding country.

The Colorado in its great length accumulates a large amount of sediment, from 0.1 to 0.4 per cent per gallon, and after this has been deposited the water on evaporation is found to contain 0.14 grammes solid residue, consisting largely of sulphate of soda and chloride of sodium. With the sediment the river is all the time building up its flood plain, and it may not be out of place to recall the general laws that govern the actions of streams while depositing the solid matter they carry in suspension.

Currents bearing sediments deposit a large percentage as soon as their velocity is checked in the least, but pick up deposited sediments again as soon as the current is increased. Thus a variable current is depositing at one point while eroding deposits at other points.

The velocity of a river current varies with the seasons on account of the different volumes of water carried, but it also varies at different points of the river, during the different hours of the day, through the constant action of the laws of erosion and deposition. The banks not furnishing a constant, even resistance, erode in the looser parts, causing each time a deflection of the current, as well as a change in the velocity. This action soon changes a straight stream with an even current, to a serpentine course with currents of different velocities, as the outside of a curve has always greater speed than the inside; consequently the outer edge is eroding while the inner is depositing sediment. The Colorado River, in the lower part of its course from Yuma down, overflows its flood plain, and deposits thereon a certain amount of sediment during every high water. This flood plain extends back for several miles on the west bank, showing a succession of benches or levees running parallel with the stream on a higher level than the back country. The water, when high enough to reach over these benches, gathers in the back part, where it evaporates, leaving a mud that greatly enriches the soil. These levees are the result of the law quoted above, as the water in the regular channel flows swifter than on the flood plain; consequently on the border of the two a large amount of sediment is thrown down. As these border lands are only covered during the highest floods, they maintain a growth of willows and poplars that gives the banks a greater stability, and preserves them to a certain extent from the erosive force of the current.

A source of changes in the direction of the main current is the stranding of logs and tree tops brought down from the upper courses of the river, as the sediment accumulates behind them and forms islands in midstream. Several of these are to be seen in the river channel in passing down the stream.

From soundings made across a section of the river at the railroad bridge at Yuma, the depth was found to vary from 2½ feet to 21 feet. At the meter placed in the main channel the indicator showed a depth of 17 feet.