[8] Successive ones also; but I consider simultaneous ones only, for simplicity's sake.
[9] The extreme case is where green light and red, e.g. light falling simultaneously on the retina, give a sensation of yellow. But I abstract from this because it is not certain that the incoming currents here affect different fibres of the optic nerve.
[10] The student can easily verify the coarser features of the eye's anatomy upon a bullock's eye, which any butcher will furnish. Clean it first from fat and muscles and study its shape, etc., and then (following Golding Bird's method) make an incision with a pointed scalpel into the sclerotic half an inch from the edge of the cornea, so that the black choroid membrane comes into view. Next with one blade of a pair of scissors inserted into this aperature, cut through sclerotic, choroid, and retina (avoid wounding the membrane of the vitreous body!) all round the eyeball parallel to the cornea's edge.
The eyeball is thus divided into two parts, the anterior one containing the iris, lens, vitreous body, etc., whilst the posterior one contains most of the retina. The two parts can be separated by immersing the eyeball in water, cornea downwards, and simply pulling off the portion to which the optic nerve is attached. Floating this detached posterior cap in water, the delicate retina will be seen spread out over the choroid (which is partly iridescent in the ox tribe); and by turning the cup inside out, and working under water with a camel's-hair brush, the vessels and nerves of the eyeball may be detected.
The anterior part of the eyeball can then be attacked. Seize with forceps on each side the edge of the sclerotic and choroid (not including the retina), raise the eye with the forceps thus applied and shake it gently till the vitreous body, lens, capsule, ligament, etc., drop out by their weight, and separate from the iris, ciliary processes, cornea, and sclerotic, which remains in the forceps. Examine these latter parts, and get a view of the ciliary muscle which appears as a white line, when with camel's-hair brush and scalpel the choroid membrane is detached from the sclerotic as far forward as it will go. Turning to the parts that cling to the vitreous body observe the clear ring around the lens, and radiating outside of it the marks made by the ciliary processes before they were torn away from its suspensory ligament. A fine capillary tube may now be used to insufflate the clear ring, just below the letter p in [Fig. 3], and thus to reveal the suspensory ligament itself.
All these parts can be seen in section in a frozen eye or one hardened in alcohol.
[11] This vertical partition is introduced into stereoscopes, which otherwise would give us three pictures instead of one.
[12] The simplest form of stereoscope is two tin tubes about one and one-half inches calibre, dead black inside and (for normal eyes) ten inches long. Close each end with paper not too opaque, on which an inch-long thick black line is drawn. The tubes can be looked through, one by each eye, and held either parallel or with their farther ends converging. When properly rotated, their images will show every variety of fusion and non-fusion, and stereoscopic effect.
[13] Martin: The Human Body, p. 530.
[14] Ibid.