This is a very instructive experiment. We learn from it:

First, that the power of the water to hold particles in suspension is inversely proportional to the size of the particles;

Second, that all materials deposited in water are assorted according to size;

Third, and this is one of the most important facts in geology, all water-deposited sediments are arranged in horizontal layers, i.e., are stratified. And we have now traced to its conclusion, though very briefly, the process of the formation of one great division of stratified rocks,—the mechanically-formed or fragmental rocks. These are so called because the clay, sand, and gravel are, in every instance, fragments of pre-existing rocks; and because the formation, transportation, and especially the deposition of these fragments, are the work chiefly or entirely of mechanical forces.

Chemical Deposition.—It is a well-known fact that the sea holds in solution vast amounts of common salt as well as many other substances; and analyses of river-waters show that dissolved minerals derived from the chemical decomposition of the rocks of the land are being constantly carried into the sea.

Portions of the sea which are cut off from the main body, and which are gradually drying up, like the Great Salt Lake, Dead Sea, and Caspian Sea, become saturated solutions of the various dissolved minerals, and these are slowly deposited. This process is very nicely illustrated along our shores in summer, where, during storms, salt-water spray is thrown above the reach of the tides, and, collecting in hollows in the rocks, gradually dries up, leaving behind a crust of salt.

When the sea lays down matter which it held in suspension, we call the process mechanical deposition, and the result is mechanically-formed rocks.

But when it lays down matter which it held in solution, we call the process chemical deposition, and the result is chemically-formed rocks.

The principal substances which the sea deposits chemically are common salt, forming beds of rock-salt; sulphate of calcium, forming beds of gypsum; carbonate of calcium, forming beds of limestone; and the double carbonate of calcium and magnesium, forming beds of dolomite.

Inorganic deposition, like inorganic erosion, is both chemical and mechanical.