2. Animals and Plants, or Organic Agencies.
We turn now to the consideration of the organic agencies. And I will merely allude in passing to the vast importance of the fossil organic remains found in the stratified rocks as marks by which to determine the relative ages of the formations.
As regards the destruction of rocks—erosion—plants and animals are almost powerless; but in the role of rock-makers they play a very important part, being very efficient agents of deposition.
Formation of Coals and Bitumens.—Specimen No. 8 is an example of peat from the vicinity of Boston; but just as good specimens may be obtained in thousands of places in this and other States.
The general physical conditions under which peat is formed are familiar facts. We require simply low, level land, covered with a thin sheet of water and abundant vegetation; in other words, a marsh or swamp. If plants decay on the dry land, the decomposition is complete; they are burned up by the oxygen of the air to carbon dioxide and water just as surely as if they had been thrown into a furnace, though less rapidly, and nothing is returned to the soil but what had been taken from it by the plants during their growth. But if the plants decay under water, as in a peat-marsh or bog, the decay is incomplete, and most of the carbon of the wood is left behind. Now, if this incomplete combustion of vegetable tissues takes place in a charcoal-pit, where the wood is out of contact with air from being covered with earth, we call the carbonaceous product charcoal; but if under the water of a marsh, in Nature’s laboratory, we call the product peat. Peat is simply a natural charcoal; and, just as in ordinary charcoal, its vegetable origin is always perfectly evident. But when the deposit becomes thicker, and especially when it is buried under thick formations of other rocks, like sand and clay, the great pressure consolidates the peat; it becomes gradually more mineralized and shining, shows the vegetable tissues less distinctly, becomes more nearly pure carbon, and we call it in succession lignite, bituminous coal, and anthracite.
This is, briefly, the way in which all varieties of coal, as well as the more solid kinds of bitumen, like asphaltum, are formed. But the lighter forms of bitumen, such as petroleum and naphtha, are derived mainly, if not entirely, from the partial decomposition of animal tissues. These, it is well known, decay much more readily than vegetable tissues; and the water of an ordinary marsh or lake contains sufficient oxygen for their complete and rapid decomposition. In the deeper parts of the ocean, however, the conditions are very different, for recent researches have shown, contrary to the old idea, that the deep sea holds an abundant fauna. All grades of animal life, from the highest to the lowest, have need of a constant supply of oxygen. On the land vegetation is constantly returning to the air the oxygen consumed by animals, but in the abysses of the ocean vegetable life is scarce or wanting; and hence it must result that over these greater than continental areas countless myriads of animals are living habitually on short rations of oxygen, and in water well charged with carbon dioxide, the product of animal respiration. As a consequence, when these animals die their tissues do not find the oxygen essential for their perfect decomposition, and in the course of time become buried, in a half-decayed state, in the ever-increasing sediments of the ocean-floor.
It is important to observe that an abundance of organic matter decaying under water is not the only condition essential to the formation of beds of coal and bitumen; for this condition is realized in the luxuriant growth of sea-weeds fringing the coast in every quarter of the globe; and yet coals and bitumens are rarely of sea-shore origin. These organic products, even under the most favorable circumstances, accumulate with extreme slowness; far more slowly, as a rule, than the ordinary mechanical sediments, like sand and clay, with which they are mixed, and in which they are often completely lost. Consequently, although the deposition of the carbonized remains of plants and animals is taking place in nearly all seas, lakes, and marshes, it is only in those places where there is little or no mechanical sediment that they can predominate so as to build up beds pure enough to be called coal or bitumen. In all other cases we get merely more or less carbonaceous sand or clay. Now these especially favorable localities will manifestly not be often found along the seashore, where we have strewn the sand and clay brought down by rivers or washed off the land directly by the ever-active surf; but they must exist in the central portions of the ocean, where there is almost no mechanical sediment and yet an abundance of life, and in swamps and marshes, where there is scarcely sufficient water to cover the vegetation, and no waves or currents to wash down the soil from the surrounding hills.
Formation of Iron-ores.—The iron-ores are another class of rocks which are formed only through the agency of organic matter. Iron is an abundant and wide-spread element in the earth’s crust, and, but for the intervention of life, we might say that, while there is iron everywhere, there is not much of it in any one place, since it is originally very thinly diffused. All rocks and soils contain iron, but it is mainly in the form of the peroxide, in which state it is entirely insoluble, and hence cannot be soaked out of the soil by the rain-water and concentrated by the evaporation of the water at lower levels in ponds and marshes, as a soluble substance like salt would be. If carried off with the sand and clay, by the mechanical action of water, it remains uniformly mixed with them, and there is no tendency to its separation and concentration so as to form a true iron-ore.
But what water cannot do alone is accomplished very readily when the water is aided by decaying organic matter, which is always hungry for oxygen, being, in the language of the chemist, a powerful reducing agent. The soil, in most places, has a superficial stratum of vegetable mould or half-decayed vegetation. The rainwater percolates through this and dissolves more or less of the organic matter, which is thus carried down into the sand and clay beneath and brought in contact with the ferric oxide, from which it takes a certain proportion of oxygen, reducing the ferric to the ferrous oxide. At the same time the vegetation is burned up by the oxygen thus obtained, forming carbon dioxide, which immediately combines with the ferrous oxide, forming carbonate of iron, which, being soluble under these conditions, is carried along by the water as it gradually finds its way by subterranean drainage to the bottom of the valley and emerges in a swamp or marsh.
Here one of two things will happen: If the marsh contains little or no decaying vegetation, then as soon as the ferrous carbonate brought down from the hills is exposed to the air it is decomposed, the carbon dioxide escapes, and the iron, taking on oxygen from the air, returns to its original ferric condition; and being then quite insoluble, it is deposited as a loose, porous, earthy mass, commonly known as bog-iron-ore, which becomes gradually more solid and finally even crystalline through the subsequent action of heat and pressure. When first deposited, the ferric oxide is combined with water or hydrated, and is then known as limonite (specimen No. 12); at a later period the water is expelled, and we call the ore hematite (specimen No. 13); and at a still later age it loses part of its oxygen, becomes magnetic and more crystalline, and is then known as magnetite (specimen No. 14). Thus it is seen that the iron-ores, as we pass from bog-limonite to magnetite, form a natural series similar to and parallel with that afforded by the coals as we pass from peat to graphite.