Organic matter is another important geological agent; but all are familiar with the generalization that connects the energy exhibited by every form of life with the sun; and, besides, it is scarcely necessary to allude to the obvious fact that all animals and plants, so far at least as any display of energy is concerned, are merely differentiated portions of the earth’s fluid envelope. And so, if space permitted, it might be shown that, with the exception of the tides, nearly every form of force manifested upon the earth’s surface has its origin in the sun.

Of this trio of geological agencies operating upon the earth’s surface and vitalized by the sun—water, air, and organic matter—the water is by far the most important, and so it is common to call these collectively the aqueous agencies. Hence we have solar agencies and aqueous agencies as synonymous terms.

The aqueous agencies include, on one side, air and water, or inorganic agencies; and, on the other, animals and plants, or organic agencies.

Let us notice briefly the operation of these, beginning with the air and water.

I. AQUEOUS AGENCIES.

1. Air and Water, or Inorganic Agencies.

Chemical Erosion.—Attention is invited first to the specimens numbered 1, 2, 3, and 4. No. 1 is a sound, fresh piece of the rather common rock, diabase; and those who are acquainted with minerals will recognize that the light-colored grains in the rock are feldspar, and the dark, augite. This specimen came from a depth in the quarry, and has not been exposed to the action of the weather.

The second specimen differs from the first, apparently, as much as possible; and yet, except in being somewhat finer grained, it was originally of precisely similar composition and appearance. In fact, it is a portion of the same rock, but a weathered portion. In this we can no longer recognize the feldspar and augite as such, but both these minerals are very much changed, while in the place of a strong, hard rock we have an incoherent friable mass, which is, externally at least, easily crushed to powder; and with the next step in the weathering, as we may readily observe in the natural ledges, the rock is completely disintegrated, forming a loose earth or soil.

We have two examples of such natural powders in the specimens numbered 3 and 4; and by washing these (especially the finer one, No. 4) with water, we can prove that they consist of an impalpable substance which we may call clay, and angular grains which we may call sand. The sand-grains are really portions of the feldspar not yet entirely changed to clay.

Thus we learn that the result of the exposure of this hard rock to the weather is that it is reduced to the condition of sand and clay. What we mean especially by the weather are moisture and certain constituents of the air, particularly carbon dioxide.