The action of the weather on the rocks is almost entirely chemical. With a very few exceptions, the principal minerals of which rocks are composed, such as feldspar, hornblende, augite, and mica, are silicates, i.e., consist of silicic acid or silica combined with various bases, especially aluminum, magnesium, iron, calcium, potassium, and sodium.
Now the silica does not hold all these bases with equal strength; but carbon dioxide, in the presence of moisture, is able to take the sodium, potassium, calcium, and magnesium away from the silica in the form of carbonates, which, being soluble, are carried away by the rain-water.
The silicate of aluminum, with more or less iron, takes on water at the same time, and remains behind as a soft, impalpable powder, which is common clay.
In the case of our diabase, continued exposure to the weather would reduce the whole mass to clay. But other rocks contain grains of quartz, a hard mineral which cannot be decomposed, and it always forms sand. Certain classes of rocks, too, such as the limestones and some iron-ores, are completely dissolved by water holding carbon dioxide in solution, and nothing is left to form soil, except usually a small proportion of insoluble impurities like sand or clay.
Let us see next how these agents of decay get at the rocks. Neither water nor air can penetrate the solid rock or mineral to any considerable extent, so that practically the action is limited to surfaces, and whatever multiplies surfaces must favor decomposition.
First, we have the upper surface of the rock where it is bare, but more especially where it is covered with soil, for there it is always wet.
All rocks are naturally divided by joints into blocks, which are frequently more or less regular, and often of quite small size. Water and air penetrate into these cracks and decompose the surfaces of the blocks, and thus the field of their operations is enormously extended. These rock-blocks sometimes show very beautifully the progress of the decomposing agents from the outside inward by concentric layers or shells of rotten material, which, in the larger blocks, often envelop a nucleus of the unaltered rock.
It is interesting to observe, too, that these concentric lines of decay cut off the angles of the original blocks, so that the undecomposed nucleus, when it is found, is approximately spherical instead of cuboidal. Both these points are well illustrated by specimen No. 2; for although now nearly spherical, it was originally perfectly angular, and has become rounded by the peeling off, in concentric layers, of the decomposed material, and in most cases several of these layers are distinctly visible, like the coats of an onion. But by stripping these off we should discover, in all the larger balls at least, a solid, spheroidal nucleus, while in the smaller balls the decomposition has penetrated to the centre.
In the rocks also we find many imperfect joints and minute cracks. In cold countries these are extended and widened by the expansive power of freezing water, and thus the surfaces of decomposition become constantly greater.
Nearly all rocks suffer this chemical decomposition when exposed to the weather, but in some the decay goes on much faster than in others. Diabase is one of the rocks which decay most readily; while granite is, among common rocks, one of those that resist decay most effectually.