1. Object of the Chapter.—In the present and the succeeding chapters we have to show how the general axioms of Causation enable us to construct the science of Mechanics. We have to consider these axioms as moulding themselves, in the first place, into certain fundamental mechanical principles, which are of evident and necessary truth in virtue of their dependence upon the general axioms of Causation; and thus as forming a foundation for the whole structure of the science;—a system of truths no less necessary than the fundamental principles, because derived from these by rigorous demonstration.

This account of the construction of the science of Mechanics, however generally treated, cannot be otherwise than technical in its details, and will probably be imperfectly understood by any one not acquainted with Mechanics as a mathematical science.

I cannot omit this portion of my survey without rendering my work incomplete; but I may remark that the main purpose of it is to prove, in a more particular manner, what I have already declared in general, that there are, in Mechanics no less than in Geometry, fundamental principles of axiomatic evidence and necessity;—that these principles derive their axiomatic character from the Idea which they involve, namely, the Idea of Cause;—and that through the combination of principles of this kind, the whole science of Mechanics, including its most complex and remote results, exists as a body of solid and universal truths. [213]

2. Statics and Dynamics.—We must first turn our attention to a technical distinction of Mechanics into two portions, according as the forces about which we reason produce rest, or motion; the former portion is termed Statics, the latter Dynamics. If a stone fall, or a weight put a machine in motion, the problem belongs to Dynamics; but if the stone rest upon the ground, or a weight be merely supported by a machine, without being raised higher, the question is one of Statics.

3. Equilibrium.—In Statics, forces balance each other, or keep each other in equilibrium. And forces which directly balance each other, or keep each other in equilibrium, are necessarily and manifestly equal. If we see two boys pull at two ends of a rope so that neither of them in the smallest degree prevails over the other, we have a case in which two forces are in equilibrium. The two forces are evidently equal, and are a statical exemplification of action and reaction, such as are spoken of in the third axiom concerning causes. Now the same exemplification occurs in every case of equilibrium. No point or body can be kept at rest except in virtue of opposing forces acting upon it; and these forces must always be equal in their opposite effect. When a stone lies on the floor, the weight of the stone downwards is opposed and balanced by an equal pressure of the floor upwards. If the stone rests on a slope, its tendency to slide is counteracted by some equal and opposite force, arising, it may be, from the resistance which the sloping ground opposes to any motion along its surface. Every case of rest is a case of equilibrium: every case of equilibrium is a case of equal and opposite forces.

The most complex frame-work on which weights are supported, as the roof of a building, or the cordage of a machine, are still examples of equilibrium. In such cases we may have many forces all combining to balance each other; and the equilibrium will depend on various conditions of direction and magnitude among the forces. And in order to understand what are these conditions, we must ask, in the first place, what [214] we understand by the magnitude of such forces;—what is the measure of statical forces.

4. Measure of Statical Forces.—At first we might expect, perhaps, that since statical forces come under the general notion of Cause, the mode of measuring them would be derived from the second axiom of Causation, that causes are measured by their effects. But we find that the application of this axiom is controlled by the limitation which we noticed, after stating that axiom; namely, the condition that the causes shall be capable of addition. Further, as we have seen, a statical force produces no other effect than this, that it balances some other statical force; and hence the measure of statical forces is necessarily dependent upon their balancing, that is, upon the equality of action and reaction.

That statical forces are capable of addition is involved in our conception of such forces. When two men pull at a rope in the same direction, the forces which they exert are added together. When two heavy bodies are put into a basket suspended by a string, their weights are added, and the sum is supported by the string.

Combining these considerations, it will appear that the measure of statical forces is necessarily given at once by the fundamental principle of the equality of action and reaction. Since two opposite forces which balance each other are equal, each force is measured by that which it balances; and since forces are capable of addition, a force of any magnitude is measured by adding together a proper number of such equal forces. Thus a heavy body which, appended to some certain elastic branch of a tree, would bend it down through one inch, may be taken as a unit of weight. Then if we remove this first body, and find a second heavy body which will also bend the branch through the same space, this is also a unit of weight; and in like manner we might go on to a third and a fourth equal body; and adding together the two, or the three, or the four heavy bodies, we have a force twice, or three times, or four times the unit of weight. And with [215] such a collection of heavy bodies, or weights, we can readily measure all other forces; for the same principle of the equality of action and reaction leads at once to this maxim, that any statical force is measured by the weight which it would support.