As has been said, it might at first have been supposed that we should have to apply, in this case, the axiom that causes are measured by their effects in another manner; that thus, if that body were a unit of weight which bent the bough of a tree through one inch, that body would be two units which bent it through two inches, and so on. But, as we have already stated, the measures of weight must be subject to this condition, that they are susceptible of being added: and therefore we cannot take the deflexion of the bough for our measure, till we have ascertained, that which experience alone can teach us, that under the burden of two equal weights, the deflexion will be twice as great as it is with one weight, which is not true, or at least is neither obviously nor necessarily true. In this, as in all other cases, although causes must be measured by their effects, we learn from experience only how the effects are to be interpreted, so as to give a true and consistent measure.
With regard, however, to the measure of statical force, and of weight, no difficulty really occurred to philosophers from the time when they first began to speculate on such subjects; for it was easily seen that if we take any uniform material, as wood, or stone, or iron, portions of this which are geometrically equal, must also be equal in statical effect; since this was implied in the very hypothesis of a uniform material And a body ten times as large as another of the same substance, will be of ten times the weight. But before men could establish by reasoning the conditions under which weights would be in equilibrium, some other principles were needed in addition to the mere measure of forces. The principles introduced for this purpose still resulted from the conception of equal action and reaction; but it required no small clearness of thought to select them rightly, and to employ them [216] successfully. This, however, was done, to a certain extent, by the Greeks; and the treatise of Archimedes On the Center of Gravity, is founded on principles which may still be considered as the genuine basis of statical reasoning. I shall make a few remarks on the most important principle among those which Archimedes thus employs.
5. The Center of Gravity.—The most important of the principles which enter into the demonstration of Archimedes is this: that “Every body has a center of gravity;” meaning by the center of gravity, a point at which the whole matter of the body may be supposed to be collected, to all intents and purposes of statical reasoning. This principle has been put in various forms by succeeding writers: for instance, it has been thought sufficient to assume a case much simpler than the general one; and to assert that two equal bodies have their center of gravity in the point midway between them. It is to be observed, that this assertion not only implies that the two bodies will balance upon a support placed at that midway point, but also, that they will exercise, upon such a support, a pressure equal to their sum; for this point being the center of gravity, the whole matter of the two bodies may be conceived to be collected there, and therefore the whole weight will press there. And thus the principle in question amounts to this, that when two equal heavy bodies are supported on the middle point between them, the pressure upon the support is equal to the sum of the weights of the bodies.
A clear understanding of the nature and grounds of this principle is of great consequence: for in it we have the foundation of a large portion of the science of Mechanics. And if this principle can be shown to be necessarily true, in virtue of our Fundamental Ideas, we can hardly doubt that there exist many other truths of the same kind, and that no sound view of the evidence and extent of human knowledge can be obtained, so long as we mistake the nature of these, its first principles. [217]
The above principle, that the pressure on the support is equal to the sum of the bodies supported, is often stated as an axiom in the outset of books on Mechanics. And this appears to be the true place and character of this principle, in accordance with the reasonings which we have already urged. The axiom depends upon our conception of action and reaction. That the two weights are supported, implies that the supporting force must be equal to the force or weight supported.
In order further to show the foundation of this principle, we may ask the question:—If it be not an axiom, deriving its truth from the fundamental conception of equal action and reaction, which equilibrium always implies, what is the origin of its certainty? The principle is never for an instant denied or questioned: it is taken for granted, even before it is stated. No one will doubt that it is not only true, but true with the same rigour and universality as the axioms of Geometry. Will it be said, that it is borrowed from experience? Experience could never prove a principle to be universally and rigorously true. Moreover, when from experience we prove a proposition to possess great exactness and generality, we approach by degrees to this proof: the conviction becomes stronger, the truth more secure, as we accumulate trials. But nothing of this kind is the case in the instance before us. There is no gradation from less to greater certainty;—no hesitation which precedes confidence. From the first, we know that the axiom is exactly and certainly true. In order to be convinced of it, we do not require many trials, but merely a clear understanding of the assertion itself.
But in fact, not only are trials not necessary to the proof, but they do not strengthen it. Probably no one ever made a trial for the purpose of showing that the pressure upon the support is equal to the sum of the two weights. Certainly no person with clear mechanical conceptions ever wanted such a trial to convince him of the truth; or thought the truth clearer after the trial had been made. If to such a person, an [218] experiment were shown which seemed to contradict the principle, his conclusion would be, not that the principle was doubtful, but that the apparatus was out of order. Nothing can be less like collecting truth from experience than this.
We maintain, then, that this equality of mechanical action and reaction, is one of the principles which do not flow from, but regulate our experience. To this principle, the facts which we observe must conform; and we cannot help interpreting them in such a manner that they shall be exemplifications of the principle. A mechanical pressure not accompanied by an equal and opposite pressure, can no more be given by experience, than two unequal right angles. With the supposition of such inequalities, space ceases to be space, force ceases to be force, matter ceases to be matter. And this equality of action and reaction, considered in the case in which two bodies are connected so as to act on a single support, leads to the axiom which we have stated above, and which is one of the main foundations of the science of Mechanics.
[2d ed.] [To the doctrine that mechanical principles, such as the one here under consideration (that the pressure on the point of support is equal to the sum of the weights), are derived from our Ideas, and do not flow from but regulate our experience, objections are naturally made by those who assert all our knowledge to be derived from experience. How, they ask, can we know the properties of pressures, levers and the like, except from experience? What but experience can possibly inform us that a force applied transversely to a lever will have any tendency to turn the lever on its center? This cannot be, except we suppose in the lever tenacity, rigidity and the like, which are qualities known only by experience. And it is obvious that this line of argument might be carried on through the whole subject.
My answer to this objection is a remark of the same kind as one which I have made respecting the Ideas of Space, Time, and Number, in the last Book. The mind, in apprehending events as causes [219] and effects, is governed by Laws of its own Activity; and these Laws govern the results of the mind’s action; and make these results conform to the Axioms of Causation. But this activity of the mind is awakened and developed by being exercised; and in dealing with the examples of cause and effect here spoken of, (namely, pressure and resistance, force and motion,) the mind’s activity is necessarily governed also by the bodily powers of perception and action. We are human beings only in so far as we have existed in space and time; and of our human faculties, developed by our existence in space and time, space and time are necessary conditions. In like manner, we are human beings only in so far as we have bodies, and bodily organs; and our bodies necessarily imply material objects external to us. And hence our human faculties, developed by our bodily existence in a material world, have the conditions of matter for their necessary Laws. I have already said ([chap. v.]) that our conception of Force arises with our consciousness of our own muscular exertions;—that Force cannot be conceived without Resistance to exercise itself upon;—and that this resistance is supplied by Matter. And thus the conception of Matter, and of the most general modes in which Matter receives, resists, and transmits force, are parts of our constitution which, though awakened and unfolded by our being in a material world, are not distinguishable from the original structure of the mind. I do not ascribe to the mind innate Ideas—Ideas which it would have, even if it had no intercourse with the world of space, time, and matter; because we cannot imagine a mind in such a state. But I attempt to point out and classify those Conditions of all Experience, to which the intercourse of all minds with the material world has necessarily given rise in all. Truths thus necessarily acquired in the course of all experience, cannot be said to be learnt from experience, in the same sense in which particular facts, at definite times, are learnt from experience—learnt by some persons and not by others—learnt with more or less of certainty. These latter special truths of [220] experience will be very important subjects of our consideration; but our whole chance of discussing them with any profit depends upon our keeping them distinct from the necessary and universal conditions of experience. Here, as everywhere, we must keep in view the fundamental antithesis of Ideas and Facts.]