6. Oblique Forces.—By the aid of the above axiom and a few others, the Greeks made some progress in the science of Statics. But after a short advance, they arrived at another difficulty, that of Oblique Forces, which they never overcame; and which no mathematician mastered till modern times. The unpublished manuscripts of Leonardo da Vinci, written in the fifteenth century, and the works of Stevinus and Galileo, in the sixteenth, are the places in which we find the first solid grounds of reasoning on the subject of forces acting obliquely to each other. And from that period, mathematicians, having thus become possessed of all the mechanical principles which are requisite in problems respecting equilibrium, soon framed a complete science of Statics. Succeeding writers presented this science in forms variously modified; for it was found, in Mechanics as in Geometry, that various propositions might be taken as the starting points; and that the collection of truths which it was the mechanician’s business to include in his course, might thus be traversed by various routes, each path offering a series of satisfactory demonstrations. The fundamental conceptions of force and resistance, like those of space and number, could be contemplated under different aspects, each of which might be made the basis of axioms, or of principles employed as axioms. Hence the grounds of the truth of Statics may be stated in various ways; and it would be a task of some length to examine all these completely, and to trace them to their Fundamental Ideas. This I shall not undertake here to do; but the philosophical importance of the subject makes it proper to offer a few remarks on some of the main principles involved in the different modes of presenting Statics as a rigorously demonstrated science. [221]
7. A Force may be supposed to act at any Point of its Direction.—It has been stated in the history of Mechanics[12], that Leonardo da Vinci and Galileo obtained the true measure of the effect of oblique forces, by reasonings which were, in substance, the same. The principle of these reasonings is that expressed at the head of this paragraph; and when we have a little accustomed ourselves to contemplate our conceptions of force, and its action on matter, in an abstract manner, we shall have no difficulty in assenting to the principle in this general form. But it may, perhaps, be more obvious at first in a special case.
[12] Hist. Ind. Sc. b. vi. c. i. sect. 2.
If we suppose a wheel, moveable about its axis, and carrying with it in its motion a weight, (as, for example, one of the wheels by means of which the large bells of a church are rung,) this weight may be supported by means of a rope (not passing along the circumference of the wheel, as is usual in the case of bells,) but fastened to one of the spokes of the wheel. Now the principle which is enunciated above asserts, that if the rope pass in a straight line across several of the spokes of the wheel, it makes no difference in the mechanical effect of the force applied, for the purpose of putting the bell in motion, to which of these spokes the rope is fastened. In each case, the fastening of the rope to the wheel merely serves to enable the force to produce motion about the center; and so long as the force acts in the same line, the effect is the same, at whatever point of the rope the line of action finishes.
This axiom very readily aids us in estimating the effect of oblique forces. For when a force acts on one of the arms of a lever at any oblique angle, we suppose another arm projecting from the center of motion, like another spoke of the same wheel, so situated that it is perpendicular to the force. This arm we may, with Leonardo, call the virtual lever; for, by the axiom, we may suppose the force to act where the line of its direction meets this arm; and thus we reduce the case [222] to that in which the force acts perpendicularly on the arm.
The ground of this axiom is, that matter, in Statics, is necessarily conceived as transmitting force. That force can be transmitted from one place to another, by means of matter;—that we can push with a rod, pull with a rope,—are suppositions implied in our conceptions of force and matter. Matter is, as we have said, that which receives the impression of force, and the modes just mentioned, are the simplest ways in which that impression operates. And since, in any of these cases, the force might be resisted by a reaction equal to the force itself, the reaction in each case would be equal, and, therefore, the action in each case is necessarily equal; and thus the forces must be transmitted, from one point to another, without increase or diminution.
This property of matter, of transmitting the action of force, is of various kinds. We have the coherence of a rope which enables us to pull, and the rigidity of a staff, which enables us to push with it in the direction of its length; and again, the same staff has a rigidity of another kind, in virtue of which we can use it as a lever; that is, a rigidity to resist flexure, and to transmit the force which turns a body round a fulcrum. There is, further, the rigidity by which a solid body resists twisting. Of these kinds of rigidity, the first is that to which our axiom refers; but in order to complete the list of the elementary principles of Statics, we ought also to lay down axioms respecting the other kinds of rigidity[13]. These, however, I shall not here state, as they do not involve any new principle. Like the one just considered, they form part of our fundamental conception of matter; they are not the results of any experience, but are the hypotheses to which we are irresistibly led, when we would liberate our reasonings concerning force and matter from a dependence on the special results of experience. We cannot even [223] conceive (that is, if we have any clear mechanical conceptions at all) the force exerted by the point of a staff and resisting the force which we steadily impress on the head of it, to be different from the impressed force.
[13] Such axioms are given in a little work (The Mechanical Euclid) which I published on the Elements of Mechanics.
8. Forces may have equivalent Forces substituted for them. The Parallelogram of Forces.—It has already been observed, that in order to prove the doctrines of Statics, we may take various principles as our starting points, and may still find a course of demonstration by which the leading propositions belonging to the subject may be established. Thus, instead of beginning our reasonings, as in the last section we supposed them to commence, with the case in which forces act upon different points of the same body in the same line of force, and counteract each other in virtue of the intervening matter by which the effect of force is transferred from one point to another; we may suppose different forces to act at the same point, and may thus commence our reasonings with a case in which we have to contemplate force, without having to take into our account the resistance or rigidity of matter. Two statical forces, thus acting at a mathematical point, are equivalent, in all respects, to some single force acting at the same point; and would be kept in equilibrium by a force equal and opposite to that single force. And the rule by which the single force is derived from the two, is commonly termed the parallelogram of forces; the proposition being this,—That if the two forces be represented in magnitude and direction by the two sides of a parallelogram, the resulting force will be represented in the same manner by the diagonal of the parallelogram. This proposition has very frequently been made, by modern writers, the commencement of the science of Mechanics: a position for which, by its simplicity, it is well suited; although, in order to deduce from it the other elementary propositions of the science, as, for instance, those respecting the lever, we require the axiom stated in the last section.
9. The Parallelogram of Forces is a necessary Truth.—In the series of discussions in which we are [224] here engaged, our main business is to ascertain the nature and grounds of the certainty of scientific truths. We have, therefore, to ask whether this proposition, the parallelogram of forces, be a necessary truth; and if so, on what grounds its necessity ultimately rests. We shall find that this, like the other fundamental doctrines of Statics, justly claim a demonstrative certainty. Daniel Bernoulli, in 1726, gave the first proof of this important proposition on pure statical principles; and thus, as he says[14], ‘proved that statical theorems are not less necessarily true than geometrical are.’ If we examine this proof of Bernoulli, in order to discover what are the principles on which it rests, we shall find that the reasoning employs in its progress such axioms as this;—That if from forces which are in equilibrium at a point be taken away other forces which are in equilibrium at the same point, the remainder will be in equilibrium; and generally;—That if forces can be resolved into other equivalent forces, these may be separated, grouped, and recombined, in any new manner, and the result will still be identical with what it was at first. Thus in Bernoulli’s proof, the two forces to be compounded are represented by p and q; p is resolved into two other forces, x and u; and q into two others, y and v, under certain conditions. It is then assumed that these forces may be grouped into the pairs x, y, and u, v: and when it has been shown that x and y are in equilibrium, they may, by what has been said, be removed, and the forces, p, q, are equivalent to u, v; which, being in the same direction by the course of the construction, have a result equal to their sum.