[17] See Hist. Ind Sc. b. vi. c. ii. sect. 4.

There is, as we have said, no need to assume such principles as these for the foundation of our mechanical science. But it is, on various accounts, useful to direct our attention to those cases in which truths, apprehended at first in a complex and derivative form, have afterwards been reduced to their simpler elements;—in which, also, sagacious and inventive men have fixed upon those truths as self-evident, which now appear to us only certain in virtue of demonstration. In these cases we can hardly doubt that such men were led to assert the doctrines which they discovered, not by any capricious conjecture of arbitrary selection, but by having a keener and deeper insight than other persons [230] into the relations which were the object of their contemplation; and in the science now spoken of, they were led to their assumptions by possessing clearly and distinctly the conceptions of mechanical cause and effect,—action and reaction,—force, and the nature of its operation.

13. Fluids press Equally in all Directions.—The doctrines which concern the equilibrium of fluids depend on principles no less certain and simple than those which refer to the equilibrium of solid bodies; and the Greeks, who, as we have seen, obtained a clear view of some of the principles of Statics, also made a beginning in the kindred subject of Hydrostatics. We still possess a treatise of Archimedes On Floating Bodies, which contains correct solutions of several problems belonging to this subject, and of some which are by no means easy. In this treatise, the fundamental assumption is of this kind: ‘Let it be assumed that the nature of a fluid is such, that the parts which are less pressed yield to those which are more pressed.’ In this assumption or axiom it is implied that a pressure exerted upon a fluid in one direction produces a pressure in another direction; thus, the weight of the fluid which arises from a downward force produces a lateral pressure against the sides of the containing vessel. Not only does the pressure thus diverge from its original direction into all other directions, but the pressure is in all directions exactly equal, an equal extent of the fluid being taken. This principle, which was involved in the reasoning of Archimedes, is still to the present day the basis of all hydrostatical treatises, and is expressed, as above, by saying that fluids press equally in all directions.

Concerning this, as concerning previously-noticed principles, we have to ask whether it can rightly be said to be derived from experience. And to this the answer must still be, as in the former cases, that the proposition is not one borrowed from experience in any usual or exact sense of the phrase. I will endeavour to illustrate this. There are many elementary propositions in physics, our knowledge of which [231] indisputably depends upon experience; and in these cases there is no difficulty in seeing the evidence of this dependence. In such cases, the experiments which prove the law are prominently stated in treatises upon the subject: they are given with exact measures, and with an account of the means by which errours were avoided: the experiments of more recent times have either rendered more certain the law originally asserted, or have pointed out some correction of it as requisite: and the names, both of the discoverers of the law and of its subsequent reformers, are well known. For instance, the proposition that ‘The elastic force of air varies as the density,’ was first proved by Boyle, by means of operations of which the detail is given in his Defence of his Pneumatical Experiments[18]; and by Mariotte in his Traité de l’Équilibre des Liquides, from whom it has generally been termed Mariotte’s law. After being confirmed by many other experimenters, this law was suspected to be slightly inaccurate, and a commission of the French Academy of Sciences was appointed, consisting of several distinguished philosophers[19], to ascertain the truth or falsehood of this suspicion. The result of their investigations appeared to be, that the law is exact, as nearly as the inevitable inaccuracies of machinery and measures will allow us to judge. Here we have an example of a law which is of the simplest kind and form; and which yet is not allowed to rest upon its simplicity or apparent probability, but is rigorously tested by experience. In this case, the assertion, that the law depends upon experience, contains a reference to plain and notorious passages in the history of science.

[18] Shaw’s Boyle, Vol. ii. p. 671.

[19] The members were Prony, Arago, Ampère, Girard, and Dulong. The experiments were extended to a pressure of twenty-seven atmospheres; and in no instance did the difference between the observed and calculated elasticity amount to one-hundredth of the whole; nor did the difference appear to increase with the increase of pressure.—Fechner, Repertorium, i. 110.

Now with regard to the principle that fluids press equally in all directions, the case is altogether different. [232] It is, indeed, often asserted in works on hydrostatics, that the principle is collected from experience, and sometimes a few experiments are described as exhibiting its effect; but these are such as to illustrate and explain, rather than to prove, the truth of the principle: they are never related to have been made with that exactness of precaution and measurement, or that frequency of repetition, which are necessary to establish a purely experimental truth. Nor did such experiments occur as important steps in the history of science. It does not appear that Archimedes thought experiment necessary to confirm the truth of the law as he employed it: on the contrary, he states it in exactly the same shape as the axioms which he employs in statics, and even in geometry; namely, as an assumption. Nor does any intelligent student of the subject find any difficulty in assenting to this fundamental principle of hydrostatics as soon as it is propounded to him. Experiment was not requisite for its discovery; experiment is not necessary for its proof at present; and we may add, that experiment, though it may make the proposition the more readily intelligible, can add nothing to our conviction of its truth when it is once understood.

14. Foundation of the above Axiom.—But it will naturally be asked, What then is the ground of our conviction of this doctrine of the equal pressure of a fluid in all directions? And to this I reply, that the reasons of this conviction are involved in our idea of a fluid, which is considered as matter, and therefore as capable of receiving, resisting, and transmitting force according to the general conception of matter; and which is also considered as matter which has its parts perfectly moveable among one another. For it follows from these suppositions, that if the fluid be confined, a pressure which thrusts in one side of the containing vessel, may cause any other side to bulge outwards, if there be a part of the surface which has not strength to resist this pressure from within. And that this pressure, when thus transferred into a direction different from the original one, is not altered in intensity, [233] depends upon this consideration; that any difference in the two pressures would be considered as a defect of perfect fluidity, since the fluidity would be still more complete, if this entire and undiminished transmission of pressure in all directions were supposed. If, for instance, the lateral pressure were less than the vertical, this could be conceived no other way than as indicating some rigidity or adhesion of the parts of the fluid. When the fluidity is perfect, the two pressures which act in the two different parts of the fluid exactly balance each other: they are the action and the reaction; and must hence be equal by the same necessity as two directly opposite forces in statics.

But it may be urged, that even if we grant that this conception of a perfect fluid, as a body which has its parts perfectly moveable among each other, leads us necessarily to the principle of the equality of hydrostatic pressure in all directions, still this conception itself is obtained from experience, or suggested by observation. And to this we may reply, that the conception of a fluid, as contemplated in mechanical theory, cannot be said to be derived from experience, except in the same manner as the conception of a solid and rigid body may be said to be acquired by experience. For if we imagine a vessel full of small, smooth spherical balls, such a collection of balls would approach to the nature of a fluid, in having its parts moveable among each other; and would approach to perfect fluidity, as the balls became smoother and smaller. And such a collection of balls would also possess the statical properties of a fluid; for it would transmit pressure out of a vertical into a lateral (or any other) direction, in the same manner as a fluid would do. And thus a collection of solid bodies has the same property which a fluid has; and the science of Hydrostatics borrows from experience no principles beyond those which are involved in the science of Statics respecting solids. And since in this latter portion of science, as we have already seen, none of the principles depend for their evidence upon any special experience, the doctrines of Hydrostatics also are not [234] proved by experience, but have a necessary truth borrowed from the relations of our ideas.

It is hardly to be expected that the above reasoning will, at first sight, produce conviction in the mind of the reader, except he have, to a certain extent, acquainted himself with the elementary doctrines of the science of Hydrostatics as usually delivered; and have followed, with clear and steady apprehension, some of the trains of reasoning by which the pressures of fluids are determined; as, for instance, the explanation of what is called the Hydrostatic Paradox. The necessity of such a discipline in order that the reader may enter fully into this part of our speculations, naturally renders them less popular; but this disadvantage is inevitable in our plan. We cannot expect to throw light upon philosophy by means of the advances which have been made in the mathematical and physical sciences, except we really understand the doctrines which have been firmly established in those sciences. This preparation for philosophizing may be somewhat laborious; but such labour is necessary if we would pursue speculative truth with all the advantages which the present condition of human knowledge places within our reach.