We may add, that the consequences to which we are directed by the preceding opinions, are of very great importance in their bearing upon our general views respecting human knowledge. I trust to be able to show, that some important distinctions are illustrated, some perplexing paradoxes solved, and some large anticipations of the future extension of our knowledge suggested, by means of the conclusions to which the preceding discussions have conducted us. But before I proceed to these general topics, I must consider the foundations of some of the remaining portions of the science of Mechanics.

CHAPTER VII.
Of the Establishment of the Principles of Dynamics.


1. IN the History of Mechanics, I have traced the steps by which the three Laws of Motion and the other principles of mechanics were discovered, established, and extended to the widest generality of form and application. We have, in these laws, examples of principles which were, historically speaking, obtained by reference to experience. Bearing in mind the object and the result of the preceding discussions, we cannot but turn with much interest to examine these portions of science; to inquire whether there be any real difference in the grounds and nature between the knowledge thus obtained, and those truths which we have already contemplated; and which, as we have seen, contain their own evidence, and do not require proof from experiment.

2. The First Law of Motion.—The first law of motion is, that When a body moves not acted upon by any force, it will go on perpetually in a straight line, and with a uniform velocity. Now what is the real ground of our assent to this proposition? That it is not at first sight a self-evident truth, appears to be clear; since from the time of Aristotle to that of Galileo the opposite assertion was held to be true; and it was believed that all bodies in motion had, by their own nature, a constant tendency to move more and more slowly, so as to stop at last. This belief, indeed, is probably even now entertained by most persons, till their attention is fixed upon the arguments by which the first law of motion is established. It is, however, not difficult to lead any person of a speculative habit [236] of thought to see that the retardation which constantly takes place in the motion of all bodies when left to themselves, is, in reality, the effect of extraneous forces which destroy the velocity. A top ceases to spin because the friction against the ground and the resistance of the air gradually diminish its motion, and not because its motion has any internal principle of decay or fatigue. This may be shown, and was, in fact, shown by Hooke before the Royal Society, at the time when the laws of motion were still under discussion, by means of experiments in which the weight of the top is increased, and the resistance to motion offered by its support, is diminished; for by such contrivances its motion is made to continue much longer than it would otherwise do. And by experiments of this nature, although we can never remove the whole of the external impediments to continued motion, and although, consequently, there will always be some retardation; and an end of the motion of a body left to itself, however long it may be delayed, must at last come; yet we can establish a conviction that if all resistance could be removed, there would be no diminution of velocity, and thus the motion would go on for ever.

If we call to mind the axioms which we formerly stated, as containing the most important conditions involved in the idea of Cause, it will be seen that our conviction in this case depends upon the first axiom of Causation, that nothing can happen without a cause. Every change in the velocity of the moving body must have a cause; and if the change can, in any manner, be referred to the presence of other bodies, these are said to exert force upon the moving body: and the conception of force is thus evolved from the general idea of cause. Force is any cause which has motion, or change of motion, for its effect; and thus, all the change of velocity of a body which can be referred to extraneous bodies,—as the air which surrounds it, or the support on which it rests,—is considered as the effect of forces; and this consideration is looked upon as explaining the difference between the motion which really takes places in the experiment, and that motion [237] which, as the law asserts, would take place if the body were not acted on by any forces.

Thus the truth of the first law of motion depends upon the axiom that no change can take place without a cause; and follows from the definition of force, if we suppose that there can be none but an external cause of change. But in order to establish the law, it was necessary further to be assured that there is no internal cause of change of velocity belonging to all matter whatever, and operating in such a manner that the mere progress of time is sufficient to produce a diminution of velocity in all moving bodies. It appears from the history of mechanical science, that this latter step required a reference to observation and experiment; and that the first law of motion is so far, historically at least, dependent upon our experience.

But notwithstanding this historical evidence of the need which we have of a reference to observed facts, in order to place this first law of motion out of doubt, it has been maintained by very eminent mathematicians and philosophers, that the law is, in truth, evident of itself, and does not really rest upon experimental proof. Such, for example, is the opinion of d’Alembert[20], who offers what is called an à priori proof of this law; that is, a demonstration derived from our ideas alone. When a body is put in motion, either, he says, the cause which puts it in motion at first, suffices to make it move one foot, or the continued action of the cause during this foot is requisite for the motion. In the first case, the same reason which made the body proceed to the end of the first foot will hold for its going on through a second, a third, a fourth foot, and so on for any number. In the second case, the same reason which made the force continue to act during the first foot, will hold for its acting, and therefore for the body moving during each succeeding foot. And thus the body, once beginning to move, must go on moving for ever.

[20] Dynamique.