[238] It is obvious that we might reply to this argument, that the reasons for the body proceeding during each succeeding foot may not necessarily be all the same; for among these reasons may be the time which has elapsed; and thus the velocity may undergo a change as the time proceeds: and we require observation to inform us that it does not do so.

Professor Playfair has presented nearly the same argument, although in a different and more mathematical form[21]. If the velocity change, says he, it must change according to some expression of calculation depending upon the time, or, in mathematical language, must be a function of the time. If the velocity diminish as the time increases, this may be expressed by stating the velocity in each case as a certain number, from which another quantity, or term, increasing as the time increases, is subtracted. But, Playfair adds, there is no condition involved in the nature of the case, by which the coefficients, or numbers which are to be employed, along with the number representing the time, in calculating this second term, can be determined to be of one magnitude rather than of any other. Therefore he infers there can be no such coefficients, and that the velocity is in each case equal to some constant number, independent of the time; and is therefore the same for all times.

[21] Outlines of Natural Philosophy, p. 26.

In reply to this we may observe, that the circumstance of our not seeing in the nature of the case anything which determines for us the coefficients above spoken of, cannot prove that they have not some certain value in nature. We do not see in the nature of the case anything which should determine a body to fall sixteen feet in a second of time, rather than one foot or one hundred feet: yet in fact the space thus run through by falling bodies is determined to a certain magnitude. It would be easy to assign a mathematical expression for the velocity of a body, implying that one-hundredth of the velocity, or any other [239] fraction, is lost in each second[22]: and where is the absurdity of supposing such an expression really to represent the velocity?

[22] This would be the case, if, t being the number of seconds elapsed, and C some constant quantity, the velocity were expressed by this mathematical formula, C(99100)t.

Most modern writers on mechanics have embraced the opposite opinion, and have ascribed our knowledge of this first law of motion to experience. Thus M. Poisson, one of the most eminent of the mathematicians who have written on this subject, says[23], “We cannot affirm à priori that the velocity communicated to a body will not become slower and slower of itself, and end by being entirely extinguished. It is only by experience and induction that this question can be decided.”

[23] Poisson, Dynamique, ed. 2, art. 113.

Yet it cannot be denied that there is much force in those arguments by which it is attempted to show that the First Law of Motion, such as we find it, is more consonant to our conceptions than any other would be. The Law, as it exists, is the most simple that we can conceive. Instead of having to determine by experiments what is the law of the natural change of velocity, we find the Law to be that it does not change at all. To a certain extent, the Law depends upon the evident axiom, that no change can take place without a cause. But the question further occurs, whether the mere lapse of time may not be a cause of change of velocity. In order to ensure this, we have recourse to experiment; and the result is that time alone does not produce any such change. In addition to the conditions of change which we collect from our own Ideas, we ask of Experience what other conditions and circumstances she has to offer; and the answer is, that she can point out none; When we have removed the alterations which external causes, in our very conception of them, occasion, there are no longer any alterations. Instead of having to guide ourselves [240] by experience, we learn that on this subject she has nothing to tell us. Instead of having to take into account a number of circumstances, we find that we have only to reject all circumstances. The velocity of a body remains unaltered by time alone, of whatever kind the body itself be.

But the doctrine that time alone is not a cause of change of velocity in any body is further recommended to us by this consideration;—that time is conceived by us not as a cause, but only as a condition of other causes producing their effects. Causes operate in time; but it is only when the cause exists, that the lapse of time can give rise to alterations. When therefore all external causes of change of velocity are supposed to be removed, the velocity must continue identical with itself, whatever the time which elapses. An eternity of negation can produce no positive result.

Thus, though the discovery of the First Law of Motion was made, historically speaking, by means of experiment, we have now attained a point of view in which we see that it might have been certainly known to be true independently of experience. This law in its ultimate form, when completely simplified and steadily contemplated, assumes the character of a self-evident truth. We shall find the same process to take place in other instances. And this feature in the progress of science will hereafter be found to suggest very important views with regard both to the nature and prospects of our knowledge.