We see, in the above reasoning, a number of abstract terms introduced which are not, at first at least, very distinctly defined, as impetus, momentum, &c. Of these, momentum has been selected, to express that quantity which, in a moving body, measures the statical force impressed upon the body. This quantity is, as we have just seen, proportional to the velocity in a given body. It is also, in different bodies, proportional to the mass of the body. This part of the third law of motion follows from our conception of matter in general as consisting of parts capable of addition. A double pressure must be required to produce the same velocity in a double mass; for if the mass be halved, each half will require an equal pressure; and the addition, both of the pressures and of the masses, will take place without disturbing the effects.

The measure of the quantity of matter of a body considered as affecting the velocity which pressure produces in the body, is termed its inertia, as we have already stated ([c. v.]). Inertia is the property by which a large mass of matter requires a greater force than a small mass, to give it an equal velocity. It belongs to each portion of matter; and portions of inertia are added whenever portions of matter are added. Hence inertia is as the quantity of matter; which is only another way of expressing this third law of motion, so far as quantity of matter is concerned.

But how do we know the quantity of matter of a body? We may reply, that we take the weight as the measure of the quantity of matter: but we may then be again asked, how it appears that the weight is proportional to the inertia; which it must be, in order that the quantity of matter may be proportional to both one and the other. We answer, that this appears to be true experimentally, because all bodies fall with equal velocities by gravity, when the known causes of difference are removed. The observations of falling [253] bodies, indeed, are not susceptible of much exactness: but experiments leading to the same result, and capable of great precision, were made upon pendulums by Newton; as he relates in his Principia, Book iii. prop. 6. They all agreed, he says, with perfect accuracy: and thus the weight and the inertia are proportional in all cases, and therefore each proportional to the quantity of matter as measured by the other.

The conception of inertia, as we have already seen in [chapter v.], involves the notion of action and reaction; and thus the laws which involve inertia depend upon the idea of mutual causation. The rule, that the velocity is as the force, depends upon the principle of causation, that the effect is proportional to the cause; the effect being here so estimated as to be consistent both with the other laws of motion and with experiment.

But here, as in other cases, the question occurs again; Is experiment really requisite for the proof of this law? If we look to authorities, we shall be not a little embarrassed to decide. D’Alembert is against the necessity of experimental proof. ‘Why,’ says he[32], ‘should we have recourse to this principle employed, at the present day, by everybody, that the force is proportional to the velocity? … a principle resting solely upon this vague and obscure axiom, that the effect is proportional to the cause. We shall not examine here,’ he adds, ‘if this principle is necessarily true; we shall only avow that the proofs which have hitherto been adduced do not appear to us unexceptionable: nor shall we, with some geometers, adopt it as a purely contingent truth; which would be to ruin the certainty of mechanics, and to reduce it to be nothing more than an experimental science. We shall content ourselves with observing,’ he proceeds, ‘that certain or doubtful, clear or obscure, it is useless in mechanics, and consequently ought to be banished from the science.’ Though D’Alembert rejects the third law of motion in this form, he accepts one of [254] equivalent import, which appears to him to possess axiomatic certainty; and this procedure is in consistence with the course which he takes, of claiming for the science of mechanics more than mere experimental truth. On the contrary, Laplace considers this third law as established by experiment. ‘Is the force,’ he says’[33], ‘proportioned to the velocity? This,’ he replies, ‘we cannot know à priori, seeing that we are in ignorance of the nature of moving force: we must therefore, for this purpose, recur to experience; for all which is not a necessary consequence of the few data we have respecting the nature of things, is, for us, only a result of observation.’ And again he says[34], ‘Here, then, we have two laws of motion,—the law of inertia [the first law of motion], and the law of the force proportional to the velocity,—which are given by observation. They are the most natural and the most simple laws which we can imagine, and without doubt they flow from the very nature of matter; but this nature being unknown, they are, for us, only observed facts: the only ones, however, which Mechanics borrows from experience.’

[32] Dynamique, Pref. p. x.

[33] Méc. Cél. p. 15.

[34] p. 18.

It will appear, I think, from the views given in this and several other parts of the present work, that we cannot with justice say that we have very ‘few data respecting the nature of things,’ in speculating concerning the laws of the universe; since all the consequences which flow from the relations of our fundamental ideas, necessarily regulate our knowledge of things, so far as we have any such knowledge. Nor can we say that the nature of matter is unknown to us, in any sense in which we can conceive knowledge as possible. The nature of matter is no more unknown than the nature of space or of number. In our conception of matter, as of space and of number, are involved certain relations, which are the necessary groundwork of our knowledge; and anything which is independent of these relations, is not unknown, but inconceivable. [255]

It must be already clear to the reader, from the phraseology employed by these two eminent mathematicians, that the question respecting the formation of the third law of motion can only be solved by a careful consideration of what we mean by observation and experience, nature and matter. But it will probably be generally allowed, that, taking into account the explanations already offered of the necessary conditions of experience and of the conception of inertia, this law of motion, that the inertia is as the quantity of matter, is almost or altogether self-evident.