6. Action and Reaction are Equal in Moving Bodies.—When we have to consider bodies as acting upon one another, and influencing each other’s motions, the third law of motion is still applied; but along with this, we also employ the general principle that action and reaction are equal and opposite. Action and reaction are here to be understood as momentum produced and destroyed, according to the measure of action established by the Third Law of Motion: and the cases in which this principle is thus employed form so large a portion of those in which the third law of motion is used, that some writers (Newton at the head of them) have stated the equality of action and reaction as the third law of motion.

The third law of motion being once established, the equality of action and reaction, in the sense of momentum gained and lost, necessarily follows. Thus, if a weight hanging by a string over the edge of a smooth level table draw another weight along the table, the hanging weight moves more slowly than it would do if not so connected, and thus loses velocity by the connexion; while the other weight gains by the connexion all the velocity which it has, for if left to itself it would rest. And the pressures which restrain the descent of the first body and accelerate the motion of the second, are equal at all instants of time, for each of these pressures is the tension of the string: and hence, by the third law of motion, the momentum gained by the one body, and the momentum lost by the other in virtue of the action of this string, are equal. And similar [256] reasoning may be employed in any other case where bodies are connected.

The case where one body does not push or draw, but strikes another, appeared at first to mechanical reasoners to be of a different nature from the others; but a little consideration was sufficient to show that a blow is, in fact, only a short and violent pressure; and that, therefore, the general rule of the equality of momentum lost and gained applies to this as well as to the other cases.

Thus, in order to determine the case of the direct action of bodies upon one another, we require no new law of motion. The equality of action and reaction, which enters necessarily into every conception of mechanical operation, combined with the measure of action as given by the third law of motion, enables us to trace the consequences of every case, whether of pressure or of impact.

7. D’Alembert’s Principle.—But what will be the result when bodies do not act directly upon each other, but are indirectly connected in any way by levers, strings, pulleys, or in any other manner, so that one part of the system has a mechanical advantage over another? The result must still be determined by the principle that action and reaction balance each other. The action and reaction, being pressures in one sense, must balance each other by the laws of statics, for these laws determine the equilibrium of pressure. Now action and reaction, according to their measures in the Third Law of Motion, are momentum gained and lost, when the action is direct; and except the indirect action introduce some modification of the law, they must have the same measure still. But, in fact, we cannot well conceive any modification of the law to take place in this case; for direct action is only one (the ultimate) case of indirect action. Thus if two heavy bodies act at different points of a lever, the action of each on the other is indirect; but if the two points come together, the action becomes direct. Hence the rule must be that which we have already stated; for if the rule were false for indirect action, it would [257] also be false for direct action, for which case we have shown it to be true. And thus we obtain the general principle, that in any system of bodies which act on each other, action and reaction, estimated by momentum gained and lost, balance each other according to the laws of equilibrium. This principle, which is so general as to supply a key to the solution of all possible mechanical problems, is commonly called D’Alembert’s Principle. The experimental proofs which convinced men of the truth of the Third Law of Motion were, many or most of them, proofs of the law in this extended sense. And thus the proof of D’Alembert’s Principle, both from the idea of mechanical action and from experience, is included in the proof of the law already stated.

8. Connexion of Dynamical and Statical Principles.—The principle of equilibrium of D’Alembert just stated, is the law which he would substitute for the Third Law of Motion; and he would thus remove the necessity for an independent proof of that law. In like manner, the Second Law of Motion is by some writers derived from the principle of the composition of statical forces; and they would thus supersede the necessity of a reference to experiment in that case. Laplace takes this course, and thus, as we have seen, rests only the First and Third Law of Motion upon experience. Newton, on the other hand, recognizes the same connexion of propositions, but for a different purpose; for he derives the composition of statical forces from the Second Law of Motion.

The close connexion of these three principles, the composition of (statical) forces, the composition of (accelerating) forces with velocities, and the measure of (moving) forces by velocities, cannot be denied; yet it appears to be by no means easy to supersede the necessity of independent proofs of the last two of these principles. Both may be proved or illustrated by experiment: and the experiments which prove the one are different from those which establish the other. For example, it appears by easy calculations, that when we apply our principles to the oscillations of a pendulum, [258] the Second Law is proved by the fact, that the oscillations take place at the same rate in an east and west, and in a north and south direction: under the same circumstances, the Third Law is proved by our finding that the time of a small oscillation is proportional to the square root of the length of a pendulum; and similar differences might be pointed out in other experiments, as to their bearing upon the one law or the other.

9. Mechanical Principles become gradually more simple and more evident.—I will again point out in general two circumstances which I have already noticed in particular cases of the laws of motion.—Truths are often at first assumed in a form which is far from being the most obvious or simple;—and truths once discovered are gradually simplified, so as to assume the appearance of self-evident truths.

The former circumstance is exemplified in several of the instances which we have had to consider. The assumption, that a perpetual motion is impossible, preceded the knowledge of the first law of motion. The assumed equality of the velocities acquired down two inclined planes of the same height, was afterwards reduced to the third law of motion by Galileo himself. In the History[35], we have noted Huyghens’s assumption of the equality of the actual descent and potential ascent of the center of gravity: this was afterwards reduced by Herman and the Bernoullis, to the statical equivalence of the solicitations of gravity and the vicarious solicitations of the effective forces which act on each point; and finally to the principle of D’Alembert, which asserts that the motions gained and lost balance each other.

[35] B. vi. c. v. sect. 2.