[49] Anc. Met. vol. ii. b. v. c. vi. p. 413.

The following extract from the Ancient Metaphysics, may be sufficient to show the value of the author’s criticism on the subjects of which we are now speaking. His object is to prove that there do not exist a centripetal and a centrifugal force in the case of elliptical motion. ‘Let any man move in a circular or elliptical line described to him; and he will find no tendency in himself either to the center or from it, much less both. If indeed he attempt to make the motion with great velocity, or if he do it carelessly and inattentively, he may go out of the line, either towards the center or from it: but this is to be ascribed, not to the nature of the motion, but to our infirmity; or perhaps to the animal form, which is more fitted for progressive motion in a right line than for any kind of curvilinear motion. But this is not the case with a sphere or spheroid, which is equally adapted to motion in all directions[50].’ We need hardly remind the reader that the manner in which a man running round a small circle, finds it necessary to lean inwards, in order that there may be a centripetal inclination to counteract the centrifugal force, is a standard example of our mechanical doctrines; and this fact (quite familiar in practice as well as theory) is in direct contradiction of Lord Monboddo’s assertion.

[50] Anc. Met. vol. i. b. ii. c. 19, p. 264.

5. A similar absence of distinct mechanical thought appears in some of the most celebrated metaphysicians of Germany. I have elsewhere noted[51] the opinion expressed by Hegel, that the glory which belongs to [284] Kepler has been unjustly transferred to Newton; and I have suggested, as the explanation of this mode of thinking, that Hegel himself, in the knowledge of mechanical truth, had not advanced beyond Kepler’s point of view. Persons who possess conceptions of space and number, but who have not learnt to deal with ideas of force and causation, may see more value in the discoveries of Kepler than in those of Newton. Another exemplification of this state of mind may be found in Professor Schelling’s speculations; for instance, in his Lectures on the Method of Academical Study. In the twelfth Lecture, on the study of Physics and Chemistry, he says, (p. 266,) ‘What the mathematical natural philosophy has done for the knowledge of the laws of the universe since the time that they were discovered by his (Kepler’s) godlike genius, is, as is well known, this: it has attempted a construction of those laws which, according to its foundations, is altogether empirical. We may assume it as a general rule, that in any proposed construction, that which is not a pure general form cannot have any scientific import or truth. The foundation from which the centrifugal motion of the bodies of the world is derived, is no necessary form, it is an empirical fact. The Newtonian attractive force, even if it be a necessary assumption for a merely reflective view of the subject, is still of no significance for the Reason, which recognizes only absolute relations. The grounds of the Keplerian laws can be derived, without any empirical appendage, purely from the doctrine of Ideas, and of the two Unities, which are in themselves one Unity, and in virtue of which each being, while it is absolute in itself, is at the same time in the absolute, and reciprocally.’

[51] Hist. Ind. Sc. b. vii. c. ii. sect. 5.

It will be observed, that in this passage our mechanical laws are objected to because they are not necessary results of our ideas; which, however, as we have seen, according to the opinion of some eminent mechanical philosophers, they are. But to assume this evident necessity as a condition of every advance in science, is to mistake the last, perhaps unattainable step, for the first, which lies before our feet. And, [285] without inquiring further about ‘the Doctrine of the two Unities,’ or the manner in which from that doctrine we may deduce the Keplerian laws, we may be well convinced that such a doctrine cannot supply any sufficient reason to induce us to quit the inductive path by which all scientific truth up to the present time has been acquired.

6. But without going to schools of philosophy opposed to the Inductive School, we may find many loose and vague habits of thinking on mechanical subjects among the common classes of readers and reasoners. And there are some familiar modes of employing the phraseology of mechanical science, which are, in a certain degree, chargeable with inaccuracy, and may produce or perpetuate confusion. Among such cases we may mention the way in which the centripetal and centrifugal forces, and also the projectile and central forces of the planets, are often compared or opposed. Such antitheses sometimes proceed upon the false notion that the two members of these pairs of forces are of the same kind: whereas on the contrary the projectile force is a hypothetical impulsive force which may, at some former period, have caused the motion to begin; while the central force is an actual force, which must act continuously and during the whole time of the motion, in order that the motion may go on in the curve. In the same manner the centrifugal force is not a distinct force in a strict sense, but only a certain result of the first law of motion, measured by the portion of centripetal force which counteracts it. Comparisons of quantities so heterogeneous imply confusion of thought, and often suggest baseless speculations and imagined reforms of the received opinions.

7. I might point out other terms and maxims, in addition to those already mentioned, which, though formerly employed in a loose and vague manner, are now accurately understood and employed by all just thinkers; and thus secure and diffuse a right understanding of mechanical truths. Such are momentum, inertia, quantity of matter, quantity of motion; that force is proportional to its effects; that action and [286] reaction are equal; that what is gained in force by machinery is lost in time; that the quantity of motion in the world cannot be either increased or diminished. When the expression of the truth thus becomes easy and simple, clear and convincing, the meanings given to words and phrases by discoverers glide into the habitual texture of men’s reasonings, and the effect of the establishment of true mechanical principles is felt far from the school of the mechanician. If these terms and maxims are understood with tolerable clearness, they carry the influence of truth to those who have no direct access to its sources. Many an extravagant project in practical machinery, and many a wild hypothesis in speculative physics, has been repressed by the general currency of such maxims as we have just quoted.

8. Indeed so familiar and evident are the elementary truths of mechanics when expressed in this simple form, that they are received as truisms; and men are disposed to look back with surprise and scorn at the speculations which were carried on in neglect of them. The most superficial reasoner of modern times thinks himself entitled to speak with contempt and ridicule of Kepler’s hypothesis concerning the physical causes of the celestial motions: and gives himself credit for intellectual superiority, because he sees, as self-evident, what such a man could not discover at all. It is well for such a person to recollect, that the real cause of his superior insight is not the pre-eminence of his faculties, but the successful labours of those who have preceded him. The language which he has learnt to use unconsciously, has been adapted to, and moulded on, ascertained truths. When he talks familiarly of “accelerating forces” and “deflexions from the tangent,” he is assuming that which Kepler did not know, and which it cost Galileo and his disciples so much labour and thought to establish. Language is often called an instrument of thought; but it is also the nutriment of thought; or rather, it is the atmosphere in which thought lives: a medium essential to the activity of our speculative power, although invisible [287] and imperceptible in its operation; and an element modifying, by its qualities and changes, the growth and complexion of the faculties which it feeds. In this way the influence of preceding discoveries upon subsequent ones, of the past upon the present, is most penetrating and universal, though most subtle and difficult to trace. The most familiar words and phrases are connected by imperceptible ties with the reasonings and discoveries of former men and distant times. Their knowledge is an inseparable part of ours; the present generation inherits and uses the scientific wealth of all the past. And this is the fortune, not only of the great and rich in the intellectual world: of those who have the key to the ancient storehouses, and who have accumulated treasures of their own;—but the humblest inquirer, while he puts his reasonings into words, benefits by the labours of the greatest discoverers. When he counts his little wealth, he finds that he has in his hands coins which bear the image and superscription of ancient and modern intellectual dynasties; and that in virtue of this possession, acquisitions are in his power, solid knowledge within his reach, which none could ever have attained to, if it were not that the gold of truth, once dug out of the mine, circulates more and more widely among mankind.

9. Having so fully examined, in the preceding instances, the nature of the progress of thought which science implies, both among the peculiar cultivators of science, and in that wider world of general culture which receives only an indirect influence from scientific discoveries, we shall not find it necessary to go into the same extent of detail with regard to the other provinces of human knowledge. In the case of the Mechanical Sciences, we have endeavoured to show, not only that Ideas are requisite in order to form into a science the Facts which nature offers to us, but that we can advance, almost or quite, to a complete identification of the Facts with the Ideas. In the sciences to which we now proceed, we shall not seek to fill up the chasm by which Facts and Ideas are separated; but we shall endeavour to detect the Ideas which our [288] knowledge involves, to show how essential these are; and in some respects to trace the mode in which they have been gradually developed among men.