Cette ingénieuse théorie est sans doute plus subtile que solide, quand on cherche à l'approfondir. Mais elle n'a cependant en réalité d'autre vice logique radical que celui de la méthode infinitésimale elle-même, dont elle est, ce me semble, le développement naturel et l'explication générale, en sorte qu'elle doit être adoptée aussi long-temps qu'on jugera convenable d'employer directement cette méthode.

Je passe maintenant à l'exposition générale des deux autres conceptions fondamentales de l'analyse transcendante, en me bornant pour chacune à l'idée principale, le caractère philosophique de cette analyse ayant été, du reste, suffisamment déterminé ci-dessus, d'après la conception de Leïbnitz, à laquelle j'ai dû spécialement m'attacher, parce qu'elle permet de le saisir plus aisément dans son ensemble, et de le décrire avec plus de rapidité.

Newton a présenté successivement, sous plusieurs formes différentes, sa manière propre de concevoir l'analyse transcendante. Celle qui est aujourd'hui le plus communément adoptée, du moins parmi les géomètres du continent, a été désignée par Newton, tantôt sous le nom de méthode des premières et dernières raisons, tantôt sous celui de méthode des limites, qu'on emploie plus fréquemment.

Sous ce point de vue, l'esprit général de l'analyse transcendante consiste à introduire comme auxiliaires, à la place des quantités primitives ou concurremment avec elles, pour faciliter l'établissement des équations, les limites des rapports des accroissemens simultanés de ces quantités, ou, en d'autres termes, les dernières raisons de ces accroissemens, limites ou dernières raisons qu'on peut aisément montrer comme ayant une valeur déterminée et finie. Un calcul spécial, qui est l'équivalent du calcul infinitésimal, est ensuite destiné à s'élever de ces équations entre ces limites aux équations correspondantes entre les quantités primitives elles-mêmes.

La faculté que présente une telle analyse pour exprimer plus aisément les lois mathématiques des phénomènes tient, en général, à ce que le calcul portant, non sur les accroissemens mêmes des quantités proposées, mais sur les limites des rapports de ces accroissemens, on pourra toujours substituer à chaque accroissement toute autre grandeur plus simple à considérer, pourvu que leur dernière raison soit la raison d'égalité, ou, en d'autres termes, que la limite de leur rapport soit l'unité. Il est clair, en effet, que le calcul des limites ne saurait être nullement affecté de cette substitution. En partant de ce principe, on retrouve à peu près l'équivalent des facilités offertes par l'analyse de Leïbnitz, qui sont seulement conçues alors sous un autre point de vue. Ainsi, les courbes seront envisagées comme les limites d'une suite de polygones rectilignes, les mouvemens variés comme les limites d'un ensemble de mouvemens uniformes de plus en plus rapprochés, etc.

Qu'on veuille, par exemple, déterminer la direction de la tangente à une courbe; on la regardera comme la limite vers laquelle tendrait une sécante, qui tournerait autour du point donné, de manière que son second point d'intersection se rapprochât indéfiniment du premier. En nommant Δy et Δx les différences des coordonnées des deux points, on aurait, à chaque instant, pour la tangente trigonométrique de l'angle que fait la sécante avec l'axe des abcisses, t={Δy}/{Δx}; d'où, en prenant les limites, on déduira, relativement à la tangente elle-même, cette formule générale d'analyse transcendante

t = L {Δy/Δx}; [14]

d'après laquelle le calcul des fonctions indirectes enseignera, dans chaque cas particulier, quand l'équation de la courbe sera donnée, à déduire la relation entre t et x, en éliminant les quantités auxiliaires introduites. Si, pour achever la solution, on suppose que y = ax2 soit l'équation de la courbe proposée, on aura évidemment,

Δy = 2ax Δx + (Δx)2;

d'où l'on conclura