Δy/Δx = 2ax + Δx.
Or, il est clair que la limite vers laquelle tend le second membre, à mesure que Δx diminue, est 2ax. On trouvera donc par cette méthode, t=2ax, comme nous l'avions obtenu ci-dessus pour le même cas, d'après l'analyse de Leïbnitz.
[Note 14: ][ (retour) ] J'emploie la caractéristique L pour désigner la limite.
Pareillement, quand on cherche la rectification d'une courbe, il faut substituer à l'accroissement de l'arc s, la corde de cet accroissement, qui est évidemment avec lui dans une relation telle, que la limite de leur rapport est l'unité, et alors on trouve, en suivant d'ailleurs la même marche qu'avec la méthode de Leïbnitz, cette équation générale des rectifications
(L Δs/Δx)2 = 1 + L Δy/Δx2
ou
(L Δs/Δx)2 = 1 + (L Δy/Δx)2 + (L Δz/Δx)2,
selon que la courbe est plane ou à double courbure. Il faudra maintenant, pour chaque courbe particulière, passer de cette équation à celle entre l'arc et l'abcisse, ce qui dépend du calcul transcendant proprement dit.
On reprendrait avec la même facilité, d'après la méthode des limites, toutes les autres questions générales, dont la solution a été indiquée ci-dessus, suivant la méthode infinitésimale.
Telle est, essentiellement, la conception que Newton s'était formée, pour l'analyse transcendante, ou, plus exactement, celle que Maclaurin et d'Alembert ont présentée comme la base la plus rationnelle de cette analyse, en cherchant à fixer et à coordonner les idées de Newton à ce sujet.