Par conséquent encore, l' «Intervalle» (à la fois dans le temps et dans l'espace) du rayon lumineux et de la balle est et reste zéro. Or cet «Intervalle» doit demeurer tel, quelle que soit la vitesse de l'observateur. Si donc l'obus de Jules Verne ne tombe plus mais est arrêté à la surface de la Lune, ses passagers continueront de voir le rayon lumineux coïncider en chacun de ses points, avec la trajectoire de la balle. Cette trajectoire (ils le remarquent maintenant) est incurvée par la pesanteur; donc le rayon lumineux est pareillement incurvé par elle.

Ceci démontre que la lumière ne se propage pas en ligne droite mais tombe exactement comme tous les objets, sous l'influence de la gravitation.

Si on ne l'a jamais constaté naguère, si on a toujours cru que la lumière se propage en ligne droite, c'est que par suite de son énorme vitesse, sa trajectoire n'est que très peu courbée par la pesanteur.

Cela est compréhensible. A la surface de la Terre par exemple, la lumière doit tomber (comme tous les objets) avec une vitesse qui au bout d'une seconde est de 981 centimètres. Or, au bout d'une seconde, un rayon lumineux a déjà parcouru 300 000 kilomètres. Supposons (ce qui est bien exagéré) qu'on puisse observer près de la surface de la Terre un rayon lumineux horizontal de 300 kilomètres de long. Pendant le millième de seconde que ce rayon emploiera à aller d'un observateur à l'autre il tombera seulement d'une quantité égale à 5 millièmes de millimètre.

On conçoit qu'un rayon lumineux qui, sur une distance de 300 kilomètres, ne s'éloigne de sa direction initiale que de cette quantité absolument inobservable, ait toujours été considéré comme rectiligne.

N'est-il donc nul moyen de vérifier si, oui ou non, la lumière est incurvée par la gravitation?

Ce moyen existe et c'est l'astronomie qui va nous l'apporter.

S'il est impossible d'apprécier la courbure d'un rayon lumineux allant d'un point à l'autre de la surface terrestre, c'est d'abord parce que la pesanteur sur la Terre est trop petite pour infléchir beaucoup ce rayon; c'est ensuite parce que nous ne pouvons pas le suivre sur une suffisante distance, notre planète étant ridiculement petite.

Mais ce qu'on ne peut faire sur ce petit globule terraqué, dont la lumière rapide franchit le diamètre tout entier en un vingt-cinquième de seconde, on arrivera peut-être à le réaliser dans le laboratoire gigantesque de l'espace céleste. Justement nous avons, presque à portée de la main,—à 150 millions de kilomètres, seulement, d'ici—un astre sur lequel la pesanteur est vingt-sept fois plus intense qu'ici-bas. C'est le Soleil. Un corps abandonné à lui-même y tombe dans la première seconde de 132 mètres. Sa chute est vingt-sept fois plus rapide que sur la Terre.