La lumière sera donc, près du Soleil, infléchie beaucoup plus par la pesanteur. Cette inflexion sera encore accrue par le fait que le Soleil a un million et demi de kilomètres de diamètre, et qu'un rayon lumineux a besoin de beaucoup plus de temps pour franchir cette distance que pour franchir le diamètre terrestre. L'action de la pesanteur sur ce rayon s'exerce donc pendant bien plus longtemps que sur un rayon rasant la Terre, et, pour cela aussi, elle l'incurvera davantage.

Soit un rayon lumineux provenant, par exemple, d'une étoile située très loin derrière le Soleil. S'il nous arrive après avoir rasé celui-ci, il se comportera comme un projectile. Sa trajectoire cesse d'être rectiligne, elle est légèrement courbée vers le Soleil. Autrement dit, ce rayon est dévié de la ligne droite, et la direction qu'il a lorsque nos yeux le reçoivent sur la Terre est un peu différente de la direction qu'il possédait en partant de l'étoile. Il a subi une déviation.

Le calcul montre que cette déviation, bien que faible encore, est mesurable. Elle est égale à un angle d'une seconde et trois quarts, angle que les méthodes précises des astronomes permettent de mesurer.

Ah! ça n'est point qu'il soit bien grand cet angle, qu'on en juge: il faut juxtaposer 324 000 angles d'une seconde pour faire un angle droit. Autrement dit, un angle d'une seconde est celui sous lequel on verrait, à 206 kilomètres de distance, les deux extrémités d'un piquet d'un mètre fiché dans le sol. Si nos yeux étaient assez aigus pour voir un homme de taille normale debout à 200 kilomètres de l'endroit où nous nous tenons, notre regard, en fixant successivement sa tête, puis ses pieds, dévierait d'un angle fort petit. Eh bien, cet angle représente exactement la déviation subie par la lumière qui nous vient d'une étoile après qu'elle a rasé le globe d'or du Soleil.

Si minuscule que soit cet angle, les astronomes savent le déterminer grâce à la délicate exactitude de leurs méthodes. Il ne faut point le mépriser, cet angle infime. Il ne faut point dédaigner ceux qui raffinent jusqu'à observer de pareilles bagatelles, puisque aujourd'hui la science en est bouleversée. Einstein a raison contre Newton parce qu'on a pu mesurer cet angle si petit, parce que cette déviation a été constatée en fait.

Pour vérifier si elle existe, une grosse difficulté se présentait.

Comment apercevoir le rayon qui nous vient d'une étoile en rasant le bord du Soleil, c'est-à-dire en plein jour? C'est impossible. Même avec les lunettes les plus puissantes, l'image des étoiles situées à l'arrière-plan du Soleil sont complètement noyées dans l'éclat de celui-ci, ou—pour s'exprimer plus exactement—dans la lumière diffusée par notre atmosphère.

On peut même remarquer à ce propos (si l'on ose ouvrir ici une parenthèse... et pourquoi n'oserait-on pas?) que la nuit nous a appris beaucoup plus de choses que le jour sur les mystères de l'Univers. Dans le symbolisme littéraire, et dans le politique, la lumière du jour est l'image du progrès et du savoir, la nuit l'emblème de l'ignorance. Quelle sottise! C'est blasphémer la nuit dont nous devons vénérer la brune douceur. Et je n'entends point parler ici de son charme romanesque, mais seulement des admirables progrès que nous lui devons dans le savoir.

Minuit n'est pas seulement l'heure des crimes. C'est celle aussi des vastes envolées vers les mondes lointains. Le jour on ne voit qu'un Soleil, la nuit nous en montre des millions. Et si le rideau éblouissant que la lumière solaire étend devant le ciel est tissé de rayons éclatants, c'est un rideau quand même, car il nous rend pareils aux phalènes qu'une lumière trop vive empêche de voir plus loin que le bout... de leurs ailes.

Il faut donc, pour résoudre notre problème, voir en pleine nuit des étoiles dont l'image serait près du bord solaire. Cela est-il donc impossible? Non. La nature y a pourvu en créant des éclipses totales de soleil, visibles parfois en certains lieux de la Terre.