On peut poser la question suivante: le monde réel correspond-il à la géométrie classique d'Euclide ou à celle de Riemann?
On a cru longtemps qu'il correspondait à la géométrie d'Euclide. Poincaré lui-même disait, parlant de celle-ci: «Elle est et restera la plus commode: 1o parce qu'elle est la plus simple; 2o parce qu'elle s'accorde assez bien avec les propriétés des solides naturels, ces corps dont se rapprochent nos membres et notre œil et avec lesquels nous faisons nos instruments de mesure.»
Lorsque les anciens affirmaient que la Terre est plate, ils assuraient de même... ou à peu près: «Cette notion est la plus commode: 1o parce qu'elle est la plus simple; 2o parce qu'elle s'accorde assez bien avec les propriétés des objets naturels avec lesquels nous sommes en contact.» Mais quand les hommes sont venus en contact avec des objets plus éloignés, quand les navigateurs et les astronomes ont multiplié ces objets nouveaux, la notion de la Terre plate a cessé d'être la plus commode, la plus simple, la mieux adéquate aux données sensibles. Et alors a surgi la notion de la rotondité de la Terre qui s'est trouvée infiniment plus commode, plus simple, mieux adaptée au monde extérieur.
La commodité, qui est pour Poincaré le criterium de la vérité scientifique, est une chose contingente et élastique. Tel point de vue est commode à Paris, qui ne le sera plus à Pontoise. Telle théorie est commode sur un espace de 100 mètres qui ne le sera plus sur un espace de 100 millions de kilomètres.
L'hypothèse d'une Terre plate a cédé le pas à celle d'une Terre ronde. La Terre immobile a cédé le pas à la Terre tournante. De même il semble qu'aujourd'hui, la géométrie euclidienne doive céder le pas à une autre, comme représentation commode du monde réel.
Dans l'Univers, dans notre espace réel peut-on mener une parallèle à une droite? C'est-à-dire deux droites réelles situées dans le même plan peuvent-elles ne jamais se rencontrer? Cette question signifie ceci: deux rayons lumineux cheminant dans l'espace vide et dans ce que (pour chaque fraction de ces rayons) nous appellerons un même plan, peuvent-ils ne jamais se rencontrer? La réponse à cette question est non.
Puisque dans l'espace céleste ces deux rayons lumineux sont déviés par la gravitation des astres, puisque d'ailleurs ils sont déviés inégalement, leur distance à ces astres étant différente, il s'ensuit nécessairement qu'ils cessent d'être parallèles (au sens euclidien du mot) et qu'ils finissent par se rencontrer; ou bien qu'ils cessent de remplir la première condition du parallélisme: la coexistence dans un même plan local.
En un mot, et pourvu qu'on le considère non plus dans le champ ridiculement borné des expériences de laboratoire, mais dans le vaste champ des étendues célestes, l'univers réel n'est pas euclidien parce que la lumière ne s'y propage pas en ligne droite.
Kant considérait les vérités, ou, pour mieux dire, les affirmations déductives de la géométrie euclidienne, comme des «jugements synthétiques a priori», comme des évidences sans autre issue qu'elles-mêmes. Nous venons de voir que là-dessus Kant s'est trompé, non seulement du point de vue de la géométrie théorique, mais aussi du point de vue de la géométrie réelle. L'étymologie seule du mot géométrie, qui signifie mesure du terrain, suffit d'ailleurs à montrer qu'elle fut à l'origine, et avant tout, une science pratique. Cela légitime assez la question que nous avons posée ici, de savoir à quelle géométrie s'apparente l'Univers réel.
Gauss, ce profond esprit, s'était déjà posé la question et il avait, au siècle passé, tenté des expériences précises pour mesurer si la somme des angles d'un triangle est égale à deux droits comme l'affirme la géométrie euclidienne. Dans ce dessein, il forma un vaste triangle dont les sommets étaient constitués par les points culminants de trois montagnes éloignées. L'une était le célèbre Brocken. Il fit, avec ses aides, simultanément des visées de chacun des sommets aux deux autres. Il trouva que la somme des trois angles du triangle ne différait de 180 degrés que d'une quantité égale aux erreurs d'expérience.